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Abstract—We present a method to simulate ballistic quantum
transport in one-dimensional nanostructures, such as extremely
scaled transistors, with a channel of nanowires or nanoribbons.
In contrast to most popular approaches, we develop our method
employing an accurate plane-wave basis at the atomic scale while
retaining the numerical efficiency of a localized (tight-binding)
basis at larger scales. At the core of our method is a finite-element
expansion, where the finite element basis is enriched by a set of
Bloch waves at high-symmetry points in the Brillouin zone of
the crystal. We demonstrate the accuracy and efficiency of our
method with the self-consistent simulation of ballistic transport
in graphene nanoribbon FETs.

I. INTRODUCTION

To assess the potential of highly scaled transistors, such as
those presented in this work, predictive computational mod-
eling is essential. In these devices, the short channel results
in mostly ballistic conduction through the channel, while
the overall dimensions necessitate the proper treatment of
quantum effects such as tunneling and confinement. Therefore,
a ballistic quantum transport model at the atomistic level is
required. Historically, a wide variety of different techniques
have been used to numerically implement such a transport
model. Most current methods employ a variant of the tight-
binding (TB) approximation since it offers excellent numerical
performance and scalability [1]–[3]. On the other hand, for
highly accurate ab initio calculations, an expansion on the
plane-wave basis is often used [4], [5]. In contrast to the
TB method, a plane-wave basis offers straightforward access
to the real space information that is required to deal with
position-dependent interactions as present in most electronic
devices. However, transport calculations using plane waves in
combination with the envelope expansion are known not to
scale well to large structures [6].

To obtain the accuracy of plane waves with improved com-
putational efficiency, we develop a new, physically grounded,
numerical approach. In our approach, the computationally
intensive solution of the crystal Hamiltonian in the plane wave
basis is separated from the calculation of the envelope that
determines the global transport properties of the device. In
particular, we show that we can solve the crystal Hamiltonian
with high accuracy using plane waves, leading to a fine spatial
resolution, while retaining TB-like efficiency in our transport
calculations.

Our paper is structured as follows. In Section II, we provide
the theoretical details of our method. In Section III, the
numerical implementation is discussed. In Section IV, we

demonstrate our method by simulating a graphene nanoribbon
transistor. Finally, we conclude in Section V.

II. METHOD

Here, we consider only homogeneous, one-dimensional
atomic structures composed of a repeated supercell, as illus-
trated in Fig. 1 for a graphene nanoribbon (GNR).
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Figure 1. An illustration of the decomposition of an atomistic structure in
supercells. The shaded supercell is repeated to make a structure. Locations
for the nodes ri are also indicated.

For such structures, we decompose the Hamiltonian as

H = Hc + V e ,

where Hc denotes the intrinsic crystal Hamiltonian, including,
and V e(r) is an extrinsic potential, i.e., the additional self-
consistent Hartree potential induced by the external bias.
In the commonly adopted envelope function approximation,
the extrinsic potential is assumed to be slowly varying and
only interacts with the, coarsely discretized, envelope of the
wavefunction. While we do not require the slowly-varying
assumption, we will also use the decomposition of the Hamil-
tonian to discretize the wavefunctions and Hamiltonian.

As the first step in our method, we solve the k-dependent
crystal Hamiltonian of a single supercell (Hc

k = e−ik·rHceik·r)
in a plane-wave basis, yielding the periodic part of the Bloch
waves unk(r) and their eigenenergies εnk. In this work, we
use the empirical pseudopotential method to obtain the Bloch
waves [7], [8]. However, our methodology can straightfor-
wardly be applied to solutions determined from first principles,
e.g., from density functional theory (DFT).

Next, we approximate the wavefunction in the whole device.
We discretize the structure using a partition-of-unity [9],
constructed using linear finite-element shape functions fi(r)
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that extend over two supercells with nodes ri centered between
the supercells, as indicated in Fig. 1. To capture the atomic
structure, the shape functions are enhanced with the Bloch
waves unk(r)e

ik·r, positioned relative to ri. Formally, the
wavefunctions are discretized as follows

ψ(r) =
∑
ink

cink fi(r)unk(r) e
ik·(r−ri) . (1)

Specifically, the enhancement Bloch-waves are taken at the
Γ-point and the Brillouin zone edge, while the band indices
n are chosen to include all valence bands and a few (∼ 10)
conduction bands. Thanks to the compact support of the shape
functions in r, the expansion in (1) results in a nearest-
neighbors coupling between adjacent nodes. In tight-binding
terminology, the nodes correspond to atomic sites, while the
Bloch waves (modulated by the shape functions) replace the
localized orbitals.

Finally, applying the Galerkin method, the expansion (1)
transforms the Schrödinger equation into a sparse generalized
eigenvalue problem in the coefficient vector c = {cink},[

T+ P−Q+
Mε+ εM

2
+Ve

]
c = EMc , (2)

where T is the kinetic energy matrix, P and Q are inter- and
intra-node momentum coupling matrices, M is a mass matrix
containing the basis function overlaps and ε is a diagonal
matrix containing the eigenenergies associated to the Bloch
waves. The exact form of each matrix element is provided
in the Appendix. The matrices are of size N × N where
N = Nnodes NBloch, with Nnodes the number of nodes
(one more than supercells) and NBloch the number of Bloch
waves taken in the expansion basis. Since only adjacent nodes
interact, the matrices are very sparse with dense blocks of
NBloch ×NBloch.

III. IMPLEMENTATION

To study the ballistic quantum transport in a system with
open contacts, we use the quantum transmitting boundary
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Figure 2. A high-level flow chart of the implemented solver. Elements with
rounded corners indicate a single evaluation, while straight corners indicate
updates within the self-consistent loop.

method (QTBM) [10]. We calculate the contact self-energies
ΣL/R directly from the complex bandstructure of each contact
and truncate Eq. (2) accordingly. Furthermore, since we are
only interested in ballistic transport, we can gain some effi-
ciency over the commonly used NEGF technique by directly
injecting the NL/R contact eigenmodes. For a given energy,
the coefficients are then obtained by solving the system of
equations[

T+ P−Q+
Mε+ εM

2
+Ve − EM− Σ

]
c = Iinject ,

using LU factorization. Note that the injection matrix Iinject
is only of shape N × (NL +NR).

In Fig. 2, an overview of the implemented solver is given.
For the calculation of observables and more specifically the
electron density, an integration over energies is required. To
guarantee a threshold accuracy, we use a parallel implementa-
tion of the adaptive Simpson integration method to determine
the energies at which (2) is solved. Using the definition of
the expansion in Eq. (1), we convert the coefficients to a real-
space wavefunction which yields real space observables with
sub-atomic accuracy, as illustrated in Fig. 4. The free electron
density, obtained in this way, is used in the self-consistent
solution of the Poisson equation to determine Ve(r) under
the application of bias and gating potentials. For efficiency,
the Poisson equation is discretized using the finite-element
method and solved using an iterative multi-grid method [11].
Self-consistency is obtained using the self-consistent Newton
method, accelerated using the Direct Inversion of the Iterative
Subspace (DIIS) method [12].

Finally, a separate integration is performed to extract the
current through the device to arbitrary precision. By repeating
this procedure for several bias points, we extract the transfer
and output characteristics of the device.

IV. RESULTS

To demonstrate our method, we apply it to a highly scaled
GNR field-effect transistor (FET) consisting of 80 supercells,
containing a total of 2880 atoms, as depicted in Fig. 3. The
device is 34 nm long with a channel width of approximately
2 nm. The gate is placed in a gate-all-around configuration
with equivalent oxide thickness (EOT) of 1 nm and a gate
length of 5 nm. For this device, we use a computational

5 nmEOT = 1 nm

36 nm
H-passivated armchair edge

2 nm

Figure 3. A depiction of the simulated GNR FET device, the nanoribbon is
approximately 2 nm wide and 36 nm long for the transport calculations. The
gate is 5 nm long indicated in red. The source and drain regions are uniformly
doped in a 3.34 Å thick layer with 1020 cm−3 donors, while the channel
under the gate is doped with with 1020 cm−3 acceptors. The simulations are
done at room temperature (300 K)
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Figure 5. Reconstruction of the bandstructure of a GNR in the entire Brillouin
zone from Bloch waves at the Γ-point in the center and Brillouin zone edge
(indicated with ×). The band structure is shown in a region around the Fermi
level (horizontal dashed line). The average error between the reconstruction
(solid color lines) and the correct bandstructure (black dashed lines) in this
range is around 25 meV.

basis consisting of the Bloch waves of all 66 valence bands
and 10 conduction bands, evaluated at the center (Γ-point)
and edge (Z-point) of the first Brillouin zone, for a total
of 152 basis functions. These Bloch waves are calculated
using the plane-wave empirical pseudopotential method using
a fast solver demonstrated in our previous work [7]. To
verify the accuracy of this basis expansion, we reconstruct the
bandstructure from the Bloch-basis. As shown in Fig. 5, the
GNR bandstructure obtained using these 152 basis functions is
in good agreement with the reference bandstructure calculated
between 13029 and 13238 plane waves, depending on the
k-point. This is a difference of two orders of magnitude in
required computational power.

Next, we find the self-consistent solution of the complete,
open system shown in Fig. 3. In Fig 4, we show the final
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Figure 6. The potential energy, as seen by electrons, in the transport direction
for different gate bias and gate length, averaged in the x and y directions. In
this plot, the source-drain bias is fixed at 0.2V, while the gate bias is set to
−0.1V (threshold) or −0.4V (off-state).

density, the potential energy and electric field in the off-state
(Vgs = −0.4V and Vds = 0.2V). The x and y averaged
potential is shown in Fig. 6 for reference. Note that these
quantities are fully three dimensional and resolved at well
below the atomic scale at minimal computational cost thanks
to the expansion on the Bloch waves, which are computed on a
plane-wave basis. The heavily reduced computational burden
results in a self-consistent solution for the GNR FET at a
particular bias from a flat potential in 60 minutes on a single
CPU core, using less than 2 GB of memory. This highlights
the potential for this method to scale to much larger structures.

Finally, in Fig 7, we show the device transfer characteristics
Ids(Vgs) for the GNR FET with gate lenghts of 3 nm and
5 nm. We sweep the gate voltage (Vgs) from −0.4 V to
0.3 V, at different bias points Vds. As seen in Fig 7, the
GNR FETs with short gates (3 nm) show poor sub-threshold
performance, even with the excellent gate control offered
by a gate-all-around configuration in combination with an
atomically flat nanoribbon. This is a known issue for GNR
FETs that is caused by high source-to-drain tunneling through
the barrier of these extremely short gate devices [13]. The
GNR with a longer gate, at 5 nm, has a much improved sub-

(a)

(b)

Figure 4. 3D renders of (a) the free electron density and (b) the potential energy iso-surfaces and electric field of the device shown in Fig 3. The device in
the off-state (Vgs = −0.4 V and Vds = 0.2 V). Red is used to indicate a higher value while blue indicates a lower value. The atomic positions are indicated
as small balls and the electric field is illustrated with oriented and scaled arrows. The simulation domain and region of the gate are indicated with thin black
lines.
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Figure 7. The device characteristics: source-drain current Ids with respect to
gate bias Vgs for different source-drain biases Vds on a log scale (left axis)
and a linear scale (right axis). For the logarithmic scale, the theoretical limit
of 60mV/decade sub-threshold slope is indicated for reference.

threshold performance with a minimum sub-threshold slope
of ∼ 69mV/dec at Vds = 0.4V. The high source-to-drain
leakage in the off-state in short channel GNR FETs prohibits
their use in highly scaled, low power electronics, even in the
limit of ideal ballistic transport. To correctly describe this
deterioration of the sub-threshold behavior, a proper quantum
mechanical treatment, as presented here, is warranted.

V. CONCLUSIONS

We presented a new technique to model full-band ballistic
quantum transport using plane-waves by expanding on a Bloch
wave basis at select high-symmetry points in the first Brillouin
zone. This expansion results in a reduction of the computa-
tional cost, both in processing and memory, of two orders of
magnitude, while retaining more than sufficient accuracy. We
demonstrated our technique by self-consistently simulating a
realistic GNR FET with over 2000 atoms. Furthermore, we
have shown that our technique, being based on plane-wave
calculations, provides direct access to sub-atomically resolved
3D densities.
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APPENDIX

For completeness, we provide the matrix elements used in
(2) (in atomic units for notational convenience):

Mink;i′n′k′ =

∫
d3r fi(r)φ

∗
ink(r)fi′(r)φi′n′k′(r) ,

Tink;i′n′k′ =
1

2

∫
d3r

[∇fi(r)
]
φ∗
ink(r) ·

[∇fi′(r)
]
φi′n′k′(r) ,

Pink;i′n′k′ =
1

4

∫
d3r

[∇fi(r)
]
φ∗
ink(r) · fi′(r)

[∇φi′n′k′(r)
]

+
1

4

∫
d3r fi(r)

[∇φ∗
ink(r)

] · [∇fi′(r)
]
φi′n′k′(r) ,

Qink;i′n′k′ =
1

4

∫
d3r

[∇fi(r)
] · [∇φ∗

ink(r)
]
fi′(r)φi′n′k′(r)

+
1

4

∫
d3rfi(r)φ

∗
ink(r)

[∇fi′(r)
] · [∇φi′n′k′(r)

]
,

εink;i′n′k′ = δii′δnn′δkk′Enk .

where the shifted Bloch waves are φink(r) = unk(r)e
ik·(r−ri).
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