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Abstract—Numerical algorithms dedicated to large-scale quan-
tum transport problems from first-principles are presented in
this paper. They can be decomposed into three main categories:
(i) the calculation of the open boundary conditions that connect
the simulation domain and its environment, (ii) the solution of
the resulting Schrödinger equation in the ballistic limit of trans-
port, and (iii) the extension of this case to situations involving
scattering, e.g. electron-phonon interactions. It will be shown
that ab-initio device simulations require algorithms specifically
developed for that purpose and that graphics processing units
(GPUs) can bring significant speed ups as compared to solvers
based on CPUs only. As an illustration, the computational times
coming from the investigation of a realistic conductive bridging
random access memory cell will be reported.

Index Terms—quantum transport, algorithms, DFT, NEGF

I. INTRODUCTION

Over the last 20 to 25 years, the capabilities of quantum
transport calculations have witnessed a tremendous evolution.
The state-of-the-art has rapidly gone from one-dimensional
ballistic simulations in the effective mass approximation
(EMA) [1] to multi-dimensional geometries [2], the inclu-
sion of complex scattering mechanisms in an empirical full-
band basis [3], and the consideration of ab-initio bandstruc-
ture models [4]. These progresses have been made possible
partly thanks to hardware improvements, but mostly thanks
to algorithmic innovations. The latter have allowed to move
from proof-of-concept demonstrations to the investigation of
realistic nano-devices that look almost like the manufactured
ones.

This is especially true in the nanoelectronics research area.
When the first quantum transport simulations of transistors
were proposed at the beginning of the years 2000’s, quantum
mechanical effects were not playing a role as important as
today: tunneling through the oxide layer and from the gate to
the drain regions were causing non-negligible leakage currents,
while the quantization of the channel states had a noticeable
influence on carrier transport from source to drain. However,
these phenomena could be accounted for by slightly adapting
the classical drift-diffusion (DD) equations [5], the modeling
standard in the semiconductor industry.
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Fig. 1. Three-dimensional atomic structure of a conductive bridging random
access memory (CBRAM) cell made of two Cu electrodes (one active and one
inert) separated by an amorphous SiO2 layer through which a nano-filament
can grow and dissolve. Electron transport occurs along the 𝑥 direction, while
the 𝑦 and 𝑧 axes are assumed periodic. The considered cross section in the
𝑦-𝑧 plane is equal to 2.1×2.1 nm2. The simulation domain (larger than the
one shown here) is composed of 4449 atoms.

Even today, it could be argued that, in many cases, the drift-
diffusion model is still sufficient to explain the characteristics
of newly fabricated nano-transistors or to design a future
generations of components, provided that the available DD-
based simulation tools have been first properly calibrated. This
by no way means that quantum transport solvers are unnec-
essary, simply that the performance of conventional metal-
oxide-semiconductor logic switches can, to a certain extend,
still be optimized with the help of a classical technology
computer aided design (TCAD) software. The loss of accuracy
induced by the usage of DD is largely compensated by the
significantly lower computational burden as compared to a
quantum transport package. With the advent of always more
powerful computing units, things might rapidly change.

There are other classes of nano-devices where the utiliza-
tion of a tool implementing quantum mechanical concepts is
essential to capture the underlying physics. This is the case
of non-volatile conductive bridging random access memories
(CBRAMs), also called electro-chemical metallization (ECM)
cells [6], whose electronic properties strongly depend on ionic
motions, geometrical confinement, quantization, transport via
hopping/tunneling, and electron-phonon interactions. All these
effects cannot be properly described within the framework
of a classical simulation approach. Accurate results require
a quantum transport solver from first-principles.
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Fig. 2. Projection of the CBRAM cell in Fig. 1 onto the 𝑥-𝑦 plane.
The simulation domain is described by a Hamiltonian 𝐻𝐶𝑃2𝐾 and overlap
𝑆𝐶𝑃2𝐾 matrices that are directly imported from the CP2K package [9]. The
applied open boundary conditions (OBCs) connect the device structure to two
semi-infinite leads via two retarded boundary self-energies labeled Σ𝑅𝐵 .

A Cu-SiO2 CBRAM cell is schematically represented in
Fig. 1. Its 3-D structure is resolved at the atomic level. It is
composed of two metallic electrodes, one active and one inert
(here Cu is used for both), separated by a SiO2 oxide matrix
through which a nano-filament can grow and dissolve. Here,
we will show how the electrical current flowing through such a
device can be simulated with quantum transport (QT), both in
the ballistic limit and in the presence of scattering. To do that,
open boundary conditions (OBCs) must be introduced. They
drive the electron population out-of-equilibrium. The paper
is organized as follows: in Section II, algorithms to compute
the OBCs and to solve the resulting QT problem with Non-
equilibrium Green’s Functions (NEGF) are presented. Their
application to the CBRAM cell from Fig. 1 is discussed in
Section III. Finally, conclusions are drawn in Section IV.

II. MODELING APPROACH

Figure 2 depicts the simulation domain of a CBRAM cell
in the low resistance state where the two metallic plates are
short-circuited by a Cu nano-filament that grew between them.
Within the NEGF formalism, the following equations must be
solved to obtain the transport properties of this 3-D device:
(
𝐸 ⋅ 𝑆𝐶𝑃2𝐾 −𝐻𝐶𝑃2𝐾 − Σ𝑅𝐵 − Σ𝑅𝑆

) ⋅𝐺𝑅(𝐸) = 𝐼, (1)

𝐺≷(𝐸) = 𝐺𝑅(𝐸) ⋅
(
Σ≷𝐵 +Σ≷𝑆

)
⋅𝐺𝐴(𝐸), (2)

where 𝐺𝑅, 𝐺𝐴, 𝐺<, and 𝐺> are the retarded, advanced,
lesser, and greater Green’s Functions at energy 𝐸, respectively,
with the corresponding self-energies Σ𝑅,𝐴,<,>. The index 𝐵
(𝑆) in Σ refers to the boundary (scattering) self-energy. Due
to the metallic electrodes and the amorphous nature of the
SiO2 layer, parameterizing an empirical tight-binding model
to simulate the considered CBRAM is not really practical.
Performing a density-functional theory (DFT) [7] with a
plane-wave code and then transforming the output into a
set of maximally localized Wannier functions [8] does not
appear more suitable due to the size of the system. The most
convenient solution consists in using a DFT code relying on
a localized basis set, e.g. the CP2K tool and its contracted
Gaussian-type orbitals (GTO) [9]. Hence, the overlap 𝑆𝐶𝑃2𝐾

Fig. 3. Sparsity pattern of the Hamiltonian and overlap matrices corresponding
to the CBRAM cell from Fig. 1 with extended Cu electrodes. The matrix size
is equal to 𝑁=43020 with a filling of 3.57%. A sparse band with a maximum
width of about 8000 can be observed along the diagonal of the matrix.

and Hamiltonian 𝐻𝐶𝑃2𝐾 matrices can be directly produced
by CP2K and imported into a QT code. Their sparsity pattern
can be seen in Fig. 3. Different techniques to compute the
Σ𝐵’s and solve Eqs. (1) and (2) are now reviewed.

Open Boundary Conditions: Iterative schemes like the
Sancho-Rubio algorithm [10] are very popular to determine the
OBC self-energies. They involve several matrix multiplications
and inversions with the same size as Σ. Since several iterations
(10 or more) must be executed to reach convergence, the
application of such methods to large-scale ab-initio quantum
transport problems is usually counter-indicated. As an alter-
native, the calculation of the OBCs can be transformed into
a normal eigenvalue (EV) problem [11] whose solution time
depends cubically on the system size. It should be noted that
neither Sancho-Rubio nor the EV approach can be efficiently
parallelized. More recently, contour integral methods have
been developed. With them, only the most relevant eigenvalues
needed to derive the OBC matrices can be computed [12],
[13], as can be seen in Fig. 4. The key advantage of these
techniques is that they can be parallelized. Furthermore, they
mostly require the solution of linear systems of equations with
a limited number of right-hand-sides. We have found that the
so-called Beyn algorithm [13] works the best in our case.

Ballistic Transport: Once that the Σ𝐵’s are known, the so-
lution of Eqs. (1) and (2) can start. In fact, only 𝐺𝑅 is needed
for ballistic transport. To obtain it, it has been demonstrated
that the mode space approximation can be successfully applied
to DFT+NEGF situations [14]. However, this is only possible
if the simulation domain is made of repeatable unit cells,
a condition that breaks down in the presence of amorphous
layers, as encountered here. As a consequence, the most
common approach to deal with Eq. (1) remains the recursive
Green’s Function (RGF) algorithm where the (off-)diagonal
blocks of the Green’s Functions are constructed step-by-step
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Fig. 4. Selected contour in the complex plane to enclose only the 𝑚
eigenvalues 𝜆 corresponding to propagating and slow decaying modes of the
contacts (magenta dots). The black dots refer to eigenvalues with ∣𝜆∣ <1/R
and ∣𝜆∣ >R. They can be neglected as their contribution to the OBCs is
minimal. Here, 𝑅 is a cut-off radius with typical values in the range of 10 to
100 to ensure accurate results.

going from one side of the Hamiltonian matrix to the other.
Again, due to the necessity to perform a high number of matrix
operations, RGF tends to be a limiting factor in ab-initio QT
problems. The computational load can be reduced if NEGF
is replaced by the quantum transmitting boundary method
(QTBM), also known as Wave Function (WF) formalism,
whose governing equation can be written as [11]

(
𝐸 ⋅ 𝑆𝐶𝑃2𝐾 −𝐻𝐶𝑃2𝐾 − Σ𝑅𝐵

) ⋅Ψ(𝐸) = 𝐼𝑛𝑗. (3)

This is a sparse linear system of equations “Ax=b” where
the right-hand-side 𝐼𝑛𝑗 accounts for all modes injected into
the simulation domain. The wave function Ψ(𝐸) instead of
the retarded Green’s Function 𝐺𝑅(𝐸) is computed. Eq. (3)
can be ideally handled by a parallel sparse linear solver such
as MUMPS [16]. We have recently established that by using
general-purpose graphics processing units (GPUs), implement-
ing our own algorithm called SplitSolve, and interleaving the
calculation of the OBC and of Eq. (3), the computational time
can be greatly decreased in the context of device simulations
from first-principles [17].

Transport with Scattering: When scattering is included
through self-energies Σ𝑆 , Eq. (3) is no more adapted and
Eqs. (1-2) must be recalled, the retarded and greater/lesser
Green’s Functions being requested. Besides the RGF algorithm
that can be run on CPUs only or accelerated by GPUs, a
selected inversion method can be utilized [18]. Based on a
LU decomposition of the Hamiltonian matrix, selected entries
of 𝐺𝑅 and 𝐺≷ can be computed, i.e. those corresponding
to the sparsity pattern of 𝐻𝐶𝑃2𝐾+Σ𝑅𝐵+Σ𝑅𝑆 . This approach

Fig. 5. Spatial current distribution through the CBRAM cell from Fig. 1 taken
(a) in the ballistic limit of transport and (b) in the presence of electron-phonon
scattering. Red indicates in both cases high current concentrations, blue lower
ones. For simplicity, the Si and O atoms are not shown.

x (nm)

En
er

gy
 (e

V)

E
FL

E
FR

0 2 4 6 8 10
5.2

5.4

5.6

x (nm)

En
er

gy
 (e

V)

E
FL

E
FR

0 2 4 6 8 10
5.2

5.4

5.6

(a)

(b)

Fig. 6. Spectral current through the same device as in Fig. 5, again (a) in the
ballistic limit and (b) with dissipative scattering. Regions with high current
densities are plotted in red, those without any current in green. The blue line
refers to the electrostatic potential. The left (𝐸𝐹𝐿) and right (𝐸𝐹𝑅) Fermi
levels are indicated by the dashed lines.
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Method 1 core 2 cores 4 cores 8 cores 12 cores
EV 2467 1235 - - -

Beyn 117 58.6 34 20.3 18.9

TABLE I
TIME (IN SECONDS) TO COMPUTE THE OBCS FOR THE CBRAM CELL

FROM FIG. 1 WITH AN EIGENVALUE (EV) METHOD [11] AND WITH THE

BEYN ALGORITHM [13], [17]. THE RESULTS ARE REPORTED AS A

FUNCTION OF THE NUMBER OF CORES. ALL OF THEM ARE LOCATED ON

THE SAME HYBRID NODE COMPOSED OF AN INTEL XEON E5-2690 V3
CPU (2.60 GHZ, 12 CORES) AND A NVIDIA TESLA P100 GPU.

Method 1 core 2 cores 4 cores 8 cores 12 cores
RGF (NEGF) 1743 874 - - -

MUMPS (WF) 266 150.4 116.2 100.1 -
SS (WF)* - 6.96 - - -

TABLE II
TIME (IN SECONDS) TO SOLVE THE BALLISTIC NEGF OR WF EQUATION

FOR ONE ENERGY POINT OF THE CBRAM CELL FROM FIG. 1 WITH THE

RGF ALGORITHM [15], MUMPS SPARSE LINEAR SOLVER [16], AND

SPLITSOLVE (SS) APPROACH [17]. THE SAME HARDWARE AS IN TABLE I
IS USED. THE * INDICATES THE USAGE OF THE AVAILABLE GPU.

takes advantage of the PARDISO library (direct sparse linear
solver) and its shared memory parallelization [19].

III. RESULTS

Before diving into numerical considerations, simulation
results are presented in Figs. 5 and 6: the spatial and spectral
distributions of the electrical currents flowing through the
CBRAM cell from Fig. 1 are plotted in the ballistic limit of
transport and in the presence of electron-phonon scattering
[20]. A smoothening of the electron trajectories as well as
energy relaxation characterize the inclusion of dissipative
interactions. These data could not have been generated without
the implementation of novel parallel algorithms stressing not
only CPUs, but also GPUs. The timing experiments below
should clearly highlight their benefit. They have all been
executed on either one single (OBCs and ballistic limit) or two
(scattering) nodes of the Piz Daint supercomputer at the Swiss
National Supercomputing Center [21]. Each of these nodes is
made of one Intel Xeon E5-2690 v3 CPU (2.60 GHz, 12 cores)
and one NVIDIA Tesla P100 GPU. Only the time to solve
either Eqs. (1-2) or Eq. (3) for one energy point is given. Due
to memory constraints, it is not possible to simultaneously treat
more than one energy point per node, except for the scattering
case where two nodes per energy point are required.

Table I reports the time to compute the OBCs of the
CBRAM cell from Fig. 1 with the EV and Beyn methods.
Sancho-Rubio has not been tested as it would have taken even
more time than the EV approach. Using a single core, Beyn
is already more than 20× faster than EV. If all available cores
per node are leveraged, Beyn becomes 65× more efficient
than EV (18.9 sec. on 12 cores vs. 1235 sec. on 2 cores), with
almost exactly the same numerical results. In approximately
0.1% of the cases, the Beyn algorithm does not return the
correct contact eigenvalues. This is not an intrinsic issue: it is
rather caused by the choice of not suitable setting parameters,
e.g. the cut-off radius 𝑅 in Fig. 4.

Method 1 core 2 cores 4 cores 8 cores 12 cores
RGF CPU 2001 1214 - - -

RGF GPU* 81.3 54.5 - - -
SINV - 3045 1777 1147 992

TABLE III
TIME (IN SECONDS) TO SOLVE THE NEGF EQUATIONS IN PRESENCE OF

SCATTERING FOR ONE ENERGY POINT OF THE CBRAM CELL FROM FIG. 1
WITH THE RGF ALGORITHM [15] (CPU AND CPU+GPU VERSION) AND

THE SINV APPROACH FROM PARDISO [18]. TWO HYBRID NODES WITH

THE SAME PROPERTIES AS IN TABLES II AND III ARE EMPLOYED.

Type Ball. CPU Ball. GPU Scatt. CPU Scatt. GPU
Best Time (s) 120.4 21 1026 88.5

Speed Up 1× 5.7× 1× 11.6×
OBC Solver Beyn Beyn Beyn Beyn

Schröd. Solver MUMPS SS SINV RGF
#Cores 8 10 2×12 2×2

Parallelization MPI MPI+GPU MPI+OMP MPI+GPU

TABLE IV
SUMMARY OF THE SHORTEST TIMES (IN SECONDS) OBTAINED TO SOLVE

THE OBCS AND RESULTING SCHRÖDINGER EQUATION FOR ONE ENERGY

POINT OF THE SAME CBRAM CELL AS IN FIG. 1. THE BALLISTIC AND

SCATTERING CASES ARE CONSIDERED. THE SPEED UP BROUGHT BY

GPUS, THE USED SOLVERS, THE CORE CONFIGURATION, AND THE

PARALLELIZATION TYPE ARE ALSO REPORTED.

In the ballistic limit of transport, the solution of Eq. (1)
with the RGF algorithm is equal to 874 sec. on two cores,
as detailed in Table II. Going to a higher number of cores
with RGF calls for massive code modifications without real
advantage in terms of efficiency for short device structures as
the considered CBRAM cell. Replacing the NEGF in Eq. (1)
by the WF in Eq. (3) leads to a substantial speed up, the
computing time decreasing from 874 sec. with RGF on 2 cores
down to 100.1 sec with MUMPS on 8 cores. In the latter
solver, the parallelization is achieved via the Message Passing
Interface (MPI). A factor of 8 is gained in the process. More
impressive is the reduction of the simulation time enabled
by SplitSolve: with 2 cores supported by the available GPU,
Eq. (3) is solved in less than 7 sec, 14 (100) times faster than
with MUMPS (RGF).

As soon as scattering is turned on (Table III), the calculation
of the lesser/greater Green’s Functions cannot be avoided
anymore. Two versions of the RGF algorithm have been
implemented for that purpose, one running only on CPUs and
one off-loading the computationally most intensive numerical
operations to the GPUs. This relatively straightforward trick
speeds up the simulations by a factor larger than 20, which
is really attractive for practical applications. The selected
inversion technique (SINV), currently restricted to CPUs only,
is at first slower than its RGF counterpart, but as the number
of cores (threads) per node increases, it starts to slightly
outperform it (1214 sec. on 2 cores for RGF on CPUs vs.
992 sec. on 12 cores for SINV, speed up of 1.2).

The best results on CPUs and CPUs+GPUs are summarized
in Table IV for the ballistic and scattering cases. It should
be emphasized that one of the key features of the SplitSolve
algorithm is that it can start working on the solution of Eq. (3)
even before the boundary self-energies are known. Hence, the
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CPUs and GPUs are stressed out at the same time, which
optimizes the computational performance and the simulation
time. If we assume that the presented CPU-based algorithms
represent the state-of-the-art, it can be deduced from Table IV
that GPUs can further reduce the computing time by one order
of magnitude. This factor has paved the way for the results in
Figs. 5 and 6. Without it, the inclusion of electron-phonon
scattering and self-heating effects in the study of realistic
CBRAM cells would not be doable at this time [20].

IV. CONCLUSION

A series of parallel numerical algorithms has been reviewed
in this paper to shed light on the quantum transport properties
of nanoscale devices with large dimensions. Significant speed
up factors are obtained as compared to standard solution
schemes, both for the calculation of the open boundary con-
ditions as well as for the solution of the resulting NEGF or
WF equations. In the ballistic limit of transport, the proposed
algorithms operate close to the theoretical peak performance
of the machine they are running on so that further important
improvements will be rather challenging. The situation is very
different for situations requiring the presence of scattering
self-energies. In this case, a parallel, fully GPU-based RGF
algorithm can be envisioned. It would probably bring an
additional speed up of 2 or more with respect to a simulator
or a code running only on CPUs.
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