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Abstract—State of the art quantum transport models for semi-
conductor nanodevices attribute negative (positive) unit charges
to states of the conduction (valence) band. Hybrid states that
enable band-to-band tunneling are subject to interpolation that
yield model dependent charge contributions. In any nanodevice
structure, these models rely on device and physics specific input
for the dielectric constants. This work exemplifies the large
variability of different charge interpretation models when applied
to ultrathin body transistor performance predictions. To solve
this modeling challenge, an electron-only band structure model
is extended to atomistic quantum transport. Performance predic-
tions of MOSFETs and tunneling FETs confirm the generality
of the new model and its independence of additional screening
models.

Index Terms—Electron-only, tunneling FET, ultrathin body
transistor, NEGF

I. INTRODUCTION

As the scaling of Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET) has reached sub-10 nm regime, power
consumption has become a major concern. The advantages
of lowering the dynamic power consumption by reducing
the supply voltage are fast disappearing as the static power
has begun to dominate due to the exponential increase of
the subthreshold leakage current [1]. Band-to-band tunneling
field-effect transistor (TFET) is among the most promising
candidates for future integrated circuits (ICs) due to its ability
to beat the 60mV/decade limit of the subthreshold swing
(SS) [2]. Having a smaller subthreshold swing enables a
reduction of both the supply voltage and the subthreshold
leakage current, thus further lowering the power consumption
of the ICs.

The quantitative prediction of TFET performance requires
self-consistent solutions of charge distributions and quan-
tum transport equations. The nonequilibrium Greens Function
(NEGF) method is widely accepted for this purpose [3]. The
standard model (termed as excess-charge approach or ECA) to
interpret the particle density in quantum transport calculations
distinguishes the charge carrier type: An electron (hole) in
conduction (valence) band state of n-type (p-type) MOSFET
is considered to contribute a negative (positive) unit charge.
This concept limits the computational load to solving electrons
(holes) in the conduction (valence) band only, i.e. a few kBT
of energy in addition to the energy range spanned by the
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applied bias voltage. In the Poisson equation, the dielectric
constant is then typically set to the materials constant. In
tunneling devices, a particle with energy above (below) the
conduction (valence) band is still considered to contribute
a negative (positive) unit charge. For energies between the
conduction and the valence band, various charge interpolation
schemes exist.

As will be shown in detail in this paper, the standard model
fails in various ways, both for conventional as well as for
band-to-band tunneling transistors. It turns out - consistent
with previous findings [4] in literature - that the electrostatic
screening of valence band electrons that do not take part in
transport is device physics (and not only material) dependent.
The charge interpolation schemes required for band-to-band
tunneling devices host an arbitrariness that severely limits
the reliability of device performance predictions. Any such
interpolation also suffers from incompatibility with the NEGF
method as discussed in detail in [5]. This is consistent with
previous findings in broken-gap optoelectronic bandstructure
calculations [6].

To solve these modeling challenges, a numerically efficient
charge self-consistent model is developed in the NEGF for-
malism where electrons are considered throughout all bands
including the deepest lying valence band. Performance pre-
dictions of MOSFETs and TFETs confirm the generality of
the new model and its independence of additional screening
models.

II. METHODS

In band-to-band tunneling (BTBT) situations, both valence
band and conduction band states have to be considered, since
states exist that overlap with conduction and valence band
simultaneously. The density of such states is translated with a
heuristic interpolation factor λ into their charge density con-
tribution. The expression for the charge density contribution
of each individual lead is given by

−qnECA(E, k) = qp(E, k)− qn(E, k)

= q [1− f(E, μ)]λ(E, k)|ψ(E, k)|2
−qf(E, μ) [1− λ(E, k)] |ψ(E, k)|2, (1)

where E is the state energy, ψ(E, k) is the injected conduction
or valence band state, μ is the lead Fermi level and q is the
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TABLE I
THREE HEURISTIC INTERPOLATION MODELS

Label α E ≤ D E > D

A 0.2 λ = 1− F (EV ) λ = F (EC)

B 0.5 λ = 1− F (EV ) λ = F (EC)

C 0.5 1 0

positive unit charge. The factor λ heuristically interpolates
between the positive and negative charge interpretations of
valence and conduction band. Therefore, λ depends on the
electrostatic potential, the conduction and valence band edges
and the chosen heuristic interpolation model. In general λ
is a function of energy, in-plane momentum and position.
The interpolation factor λ(E) is applied when the energy is
above the valence band edge and below the conduction band
edge. Below (above) the valence (conduction) band edge, λ(E)
is equal 1 (0). If transport happens exclusively in valence
or conduction bands (e.g. in MOSFETs), no interpolation
factor is applied in ECA. In this paper, three commonly
used [7], [8] heuristic models for λ have been chosen as
representatives (summarized in Table. I). All three heuristic
models distinguish the interpolation factor λ for energies E
below and above a delimiter energy D given by

D = (1− α)EV + αEC , (2)

where α is a unitless number and EV (EC) is the valence
(conduction) band edge. For simplicity, a function F (E) is
defined as

F (E) = E − E

2 (E −D)
, (3)

For energies above D, λ equals the function F evaluated for
E = EC and λ = 1 − F (EV ) otherwise. The space charge
density of the Poisson equation is obtained by summing the
electron or hole charge density with the background doping
density.

As a consistent alternative to the ECA model, this work
extends the charge self-consistent model (termed as full-band
approach or FBA) of Refs [6] and [9] to atomistic quantum
transport of band-to-band tunneling devices within the NEGF
formalism. Every state solved within the quantum transport
method is considered electronic and contributes, if occupied,
a negative unit charge. This is irrespective of which band that
state is in. However, this model requires resolving the density
contribution of all occupied states.

The standard NEGF treatment of density calculations re-
quires integrating the diagonal of the retarded Greensfunction
GR over an energy interval that covers all occupied states.
The recursive Greens function implementation of NEMO5 is
applied to solve for the diagonal of GR. Greens functions and
self-energies are matrices in the position space indicated in
bold font. Most of the following equations involve the diagonal
of the Greens functions only which is denoted in nonbold
letters.

The total electron density nFBA is separated into an equi-
librium neq and a nonequilibrium part nneq .

nFBA = neq + nneq. (4)

The equilibrium electron density contribution is dependent on
one contact Fermi function (e.g. the left one) and is given by

neq =
∑
k

∞∫
−∞

−Im
[
GR(E, k)

]
π

fL(E, μL)dE, (5)

where μL is the Fermi level of the left contact. Many atomistic
models yield 10s of eV with hundreds of van Hove singu-
larities of fully occupied valence bands [10], which are all
considered within neq . To avoid resolving all these states on a
real energy mesh which poses immense numerical loads, neq

is solved with the Residual theorem

neq =
∑
k

⎧⎨
⎩

∫
H+C

Im
[
GR(E, k)

]
π

fL(E, μL)dE

+i2kBT
∑
pole

GR(Epole, k)

⎫⎬
⎭ . (6)

The poles of the integrand originate from the Fermi function
of the (left) contact. These poles are located at Epole =
μL + ikBTπ(2m + 1) with Res(Epole) = −kBT , m ∈ N.
A typical integration contour [9] is shown in Fig. 1. The
integration contour consists of a semicircular part (C) whose
lower bound is set about 1 eV below the lowest eigenvalue of
the system. The horizontal part of the contour (H) is parallel
to the real energy axis. The maximum real part of H is
exceeding μL by 25 kBT to include the complete tail of the
contact Fermi function in the density calculation. The small
contour portion that closes the integration contour beyond the
horizontal section H does not have a net contribution to Eq. (5).
When the imaginary part of the integration contour is large
enough (such as indicated in Fig. 1), numerical solutions of
Eq. (6) converge with few tens of contour points.

The integral of the non-equilibrium electron density must
be performed along the real energy axis since the integrand is
not analytic in the entire complex plane.

nneq =
∑
k

∞∫
−∞

diag

{
GR(E,k)

Im
[
ΣR(E,k)

]
π

GR(E,k)†
}

× [fL(E, μL)− fR(E, μR)] dE. (7)

Equation (7) involves a matrix product of Green’s functions
and a self-energy indicated by bold letters. The integration
window is restricted by the two contact Fermi functions (μR

being the right contact’s Fermi level) and is approximately
the same energy window considered in the ECA. Compared
to the ECA, the extra computational load in FBA is given by
a few tens of energy points for the integral of the equilibrium
electron density in Eq. (6). This is a negligible addition given
the hundreds or thousands of energy points typically needed
to resolved the non-equilibrium density contribution nneq .
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Fig. 1. A typical integration contour used for neq in Eq. (4). The Fermi level
of the left contact μL is set to 0. Poles enclosed by the contour are marked
by crosses and highlighted in the inset. The inset also illustrates the dense
distribution of mesh points around the Fermi level that ensure a well resolved
contact Fermi function. The arrow on the contour indicates the direction of
the integral in the complex plane.

In charge self-consistent FBA calculations, the Poisson
equation requires a positive background charge ncore to allow
the presence of electrons in the devices. This background
charge is assumed to completely compensate the electronic
charge density of the respective undoped device in equilibrium.
The total space charge ρFBA is given by the sum of neq , nneq ,
ncore and the doping density ndoping .

ρFBA = −qnFBA + qncore + qndoping, (8)

The definition of ncore and Eq. (8) approximate Madelung-like
potentials due to charge transfer of e.g. center-device atoms
and surface atoms into one reference situation. Therefore, the
density ρFBA accounts for deviations of the charge density vs.
the reference situation of the undoped and equilibrated device.
The dielectric constant of vacuum is used in the Poisson
equation for the semiconductor materials in FBA since the
screening of all valence band electrons is explicitly included
in the calculation. This makes the FBA model independent of
the material and device specific dielectric screening.

RESULTS

A. Convergence behavior of neq calculation

The numerical convergence of solving the equilibrium elec-
tron density neq with Eqs. (5) and (6) with varying number
of energy points per momentum point is compared for ho-
mogeneous 3D silicon in Figs. 2 (a) and (b). In both cases,
the electronic Brillouin zone is resolved with 225 momentum
points. The equilibrium density of Eq. (6) converges with only
a few complex energy points (contour points and poles) per
momentum point. In contrast, many and hard to resolve van
Hove singularities on the real-energy axis prevent Eq. (5) to
fully converge even with an immense number of energy points.

B. Transfer characteristics of silicon MOSFETs

Transfer characteristics resulting from FBA and ECA charge
self-consistent calculations of a p-type and a n-type silicon
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Fig. 2. The atom resolved electron density neq vs number of energy points
per momentum point for the real energy integral in Eq. (5) (a) and for the
complex contour integral of Eq. (6) (b). The converged number of 4 valence
Si electrons is indicated with a solid line to guide the eye. The neq converges
with only 30 energy points in Eq. (6) while no convergence is observed when
solved along the real energy axis even with an immense number of energy
points.

ultra-thin body double-gate MOSFET are shown in Fig. 4.
Both MOSFET devices have a structure as shown in Fig. 3,
with body thickness, channel and source/drain lengths of
1.6nm, 10.8nm and 11.4nm, respectively. A doping concen-
tration of 1 × 1020 cm−3 is assumed in the source and drain
regions of both transistor types. A drain-to-source voltage VDS

of 0.4V is applied. The equivalent oxide thickness (EOT) of
top and bottom oxides is 1nm. It is reported both experi-
mentally [4] and theoretically [11] that the dielectric constant
of silicon ultra-thin films reduces with the film thickness. A
dielectric constant of 9.9 is used in the ECA simulations
following Ref. [11]. In FBA calculations, only the vacuum
dielectric constant enters the Poisson equation.

Results of both models, for the transfer characteristics
and band profiles agree very well. This is particularly true
compared to TFET situation (see the following subsection)
that defines the common ECA/FBA difference scale. The good

Fig. 3. Schematic of the ultra-thin body double-gate transistors used in all
transfer characteristic predictions of this work. The gate bias is controlled by
VGS . Electron transport occurs along x direction when a non-zero VDS is
applied. The channel of the device is confined along z direction and tch is the
channel thickness. Periodic boundary condition is assumed along y direction.
Lch is the channel (gate) length. NS and ND are doping concentrations in
source and drain regions, respectively.
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Fig. 4. Transfer characteristics ID − VGS of silicon ultra-thin body double-
gate nMOSFET (a) and pMOSFET (c) of Fig. 3 predicted with ECA and
FBA. The percentage difference is plotted in dashed lines with cross markers.
(b) and (d) Band profiles of ECA and FBA corresponding to VGS nodes in
(a) and (c), respectively.

agreement is expected since electronlike and holelike states
are clearly separated in these devices. The maximum relative
difference of the drain current in the two models is below
15% and the maximum potential difference is below kBT .
Note that the dielectric constant of the ECA model could serve
as a fitting degree of freedom to match the FBA results. This
finding emphasizes the strength of the FBA model to explicitly
handle the electrostatic response of the deep lying valence
electrons with a marginal increase in computational cost.

C. Silicon TFET

To compare the predictions of ECA and FBA for BTBT
devices, the device structure of Fig. 3 is considered with
the source (drain) doping being p-type (n-type). The source
and drain doping concentrations are 5 × 1019 cm−3 and
2 × 1019 cm−3, respectively. The body thickness, channel
and source/drain lengths are 1.6nm, 10.8nm and 11.4nm,
respectively. A dielectric constant of 9.9 is used in the ECA
model. The ECA utilizes heuristic models to distinguish
electronlike and holelike charge contributions in BTBT de-
vices. Three commonly used heuristic models (summarized in
Table. I) are applied in ECA and results are presented and
compared to the FBA result (see Fig. 5).

The difference in the performance predictions of ECA and
FBA can be understood from Fig. 6. The electron density in
the bandgap (at around 10nm) is considered as electrons in
FBA, whereas in ECA, a charge prefactor is assigned to it.
This prefactor depends on the position of the hole/electron
delimiter and the considered interpolation scheme (see Ta-
ble. I). A snapshot of the delimiter for α = 0.5 is illustrated
in Fig. 6. Consequently, that prefactor differs in the three
applied heuristic models. The different prefactors in turn
impact the interpretation of ECA charge and the electrostatic
potential around the tunnel junction. Thus, the TFET transfer

Fig. 5. Transfer characteristics ID−VGS at VDS = 0.3V of a silicon ultra-
thin body double-gate TFET. Results of FBA and ECA with three different
heuristic models are shown. The maximum deviation of the three ECA results
relative to their average is plotted in dashed line with cross markers.

characteristic prediction is sensitive to the chosen ECA model.
This is indicated by the large deviations in Fig. 5 among the
three considered ECA models.

Fig. 6. Contour plot of the energy and position resolved density of states of
the silicon TFET simulated in Fig. 5 at k = Γ. The conduction and valence
band edges are represented in white solid lines. The white dashed line depicts
a hole/electron delimiter for α = 0.5 in the band gap which is used to
distinguish electron and hole states in ECA.

CONCLUSION

We have developed a charge self-consistent model for quan-
tum transport calculations in TFETs where standard charge
self-consistent approaches that distinguish between electrons
and holes fail. Since the new model considers all valence
electrons explicitly, no extra input of screening constants is
required. The new model provides a much wider applica-
tion space than the conventional electron-hole picture with a
marginal increase in computational cost.
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[9] D. A. Areshkin and B. K. Nikolić, “Electron density and transport in
top-gated graphene nanoribbon devices: First-principles Green function
algorithms for systems containing a large number of atoms,” Physical
Review B - Condensed Matter and Materials Physics, vol. 81, no. 15,
pp. 1–17, 2010.

[10] Y. P. Tan, M. Povolotskyi, T. Kubis, T. B. Boykin, and
G. Klimeck, “Tight-binding analysis of si and gaas ultrathin
bodies with subatomic wave-function resolution,” Phys. Rev.
B, vol. 92, p. 085301, Aug 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.92.085301

[11] S. Markov, G. Penazzi, Y. Kwok, A. Pecchia, B. Aradi, T. Frauenheim,
and G. Chen, “Permittivity of Oxidized Ultra-Thin Silicon Films from
Atomistic Simulations,” IEEE Electron Device Letters, vol. 36, no. 10,
pp. 1076–1078, 2015.

��


