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Abstract—Quantum simulation of electronic transport in
double gate (DG) field-effect transistors (FETs) and FinFETs is
usually deemed to be required as the devices are scaled to the
nanometer length-scale. Here, we present results obtained using
a simulation program to model ballistic quantum transport
in these devices. Our quantum simulations show the presence
of quasi bound electronic states in the channel and Fano-
interference phenomenon in the transport behavior of ultra-thin
body (UTB) Si DG MOSFETs. Vortices in electron wavefunc-
tions are also reported at energies at which transmission zeros
(antiresonance) occur.

Index Terms—Fano antiresonance, quantum interference,
electron transport, DG MOSFET, Schrödinger, QTBM.

I. INTRODUCTION

Ultra-thin body (UTB) double gate (DG) MOSFETs have
a strong potential to overcome short channel effects [1]
and thus have superior scalability in comparison to conven-
tional MOSFETs. Moreover, these device structures provide
a significant improvement in performance [2] in terms of
low subthreshold slope, high ON current and high switching
speed. This makes them very attractive for current and near
future generations of silicon (Si) semiconductor devices.
Simulation of these devices is usually done using semi-
classical approaches based on the solution of Boltzmann
transport equation (BTE) [3], [4], moments of BTE [5] or
compact models augmented by quantum corrections [6], [7].
However, a full quantum treatment of these devices is neces-
sary, since at such small dimensions explicit quantum effects
would become observable. We present here a simulation
tool, based on the effective mass approximation, to model
two-dimensional (2-D) ballistic quantum transport in these
devices. To this end, we determine the 2-D self-consistent
solution of the Schrödinger and Poisson equations with open
boundary conditions using the popular Quantum Transmitting
Boundary method (QTBM) [8].

The most striking result that we obtain is the occurrence
of the Fano-interference phenomenon [9] in the simulated
UTB DG FETs. Bowen et al. [10] have shown that the
Fano resonance-antiresonance line shapes can be accurately
represented by poles and zeros, respectively, of the inverse
of the retarded Green’s function representing the system
Hamiltonian (tight-binding, in their study) connected to in-
finite reservoirs. They have presented an efficient numerical
method, based on a shift-and-invert non-symmmetric (SINS)
Lanczos algorithm, to locate the poles and zeros, mentioned
above, in single-barrier GaAs/AlAs/GaAs heterostructures.
Fano interference has also been previously predicted and/or

experimentally reported in the optical absorption spectra of
impurities in crystals [11], quantum waveguides [12], and
coupled quantum dot systems [13], [14]. Our observation
of this resonance in a realistic CMOS device structure thus
presents a novel and interesting case. Additionally, the sim-
ulated device exhibits only symmetric antiresonance ‘dips’
in electron transmission, contrary to the characteristic asym-
metric Fano resonance-antiresonance line-shape observed in
all the former cases. Moreover, vortices in current density are
seen at energies at which antiresonance occurs. Such vortices
have been previously reported in quantum simulations of
semiconductor devices, but only in the presence of deviations
from ideality – scattering with discrete dopant atoms [15] or
tapered and bent semiconductor channels [16].

The paper is organized as follows: In Sec. II, a brief
description of the structure of simulated device is provided.
In Sec. III, we give an outline of our device simulation tool.
The results of the study and our interpretation of the observed
phenonemon are presented in Sec. IV. Finally, we draw our
conclusions in Sec. V.
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Fig. 1. Net doping profile of the 10 nm UTB DG nMOS that we have
studied. The white regions at the top and bottom represent the 1 nm thick
gate oxide while the grey patches are used to highlight the position of the
gate terminals.

II. DEVICE DESCRIPTION AND SIMULATION OF
INTERFACE ROUGHNESS

We simulate the transport characteristics of a Si (UTB)
DG nMOS with channel length of 10 nm (Fig. 1). The
device (simulation region) is 4 nm thick (τSi) and 50 nm
long with symmetric 1 nm (EOT ≈ 0.3 nm) oxide at each
gate. The channel is lightly p-type doped (≈ 1015 cm−3),
while the highly doped n-type source and drain regions are
modeled using a dual Gaussian profile with peaks located at
the two oxide-semiconductor interfaces. The device behavior
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is observed under the application of equal gate bias (VGS) at
the two gates with a low drain-to-source bias (VDS ≈ 20 mV).
The channel orientation is taken along the [110] direction,
following the general trend in VLSI technology.

III. THEORETICAL SIMULATION

Our simulation tool solves the two-dimensional (2-D)
Schrödinger and Poisson equations self-consistently [18] with
open boundary conditions over a cross-section of the device.
Assuming translational invariance of the doping profile in the
out-of-plane direction y for wide devices, our 2-D simulation
is a good approximation. The Kohn-Luttinger envelope ap-
proximation is used for the Schrödinger equation taking into
account the anisotropy of the Si effective masses and the six
parabolic conduction band minima. A channel oriented along
the [110] direction results in off-diagonal terms in the effec-
tive mass tensor. The Schrödinger equation is modified to
remove the resulting mixed second-order derivatives, yielding
the equation:
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Here φv
β(x, z) is the βth 2-D wavefunction with energy

Ev
β , v is the Si valley index, mtr, mcon and mop are the

effective masses in the transport, confinement and out-of-
plane directions, respectively, for Si channel oriented in the
[100] direction. mv

x, mv
y and mv

z represent the modified
effective masses in the transport/channel x, out-of-plane y
and confinement z directions, respectively.

Open boundary conditions are used to solve Eq. (1) to en-
sure interaction of the system with the external environment
(electron reservoirs) via leads, enabling us to model system
behavior under applied VDS. To this end, we follow the
QTBM [8], [19] method. The resulting linear system is solved
using the second-order centered finite differences method,
independently for injection from each lead r. We incorporate
a novel way of discretizing the continuous energy spectrum
Ev

β of the open system by using eigen-energies of the closed
system Schrödinger Hamiltonian [19], [20]. Our scheme
bears resemblance to the method proposed by Fischetti [17].
The calculated wavefunctions are ‘box-normalized’ and used
to determine the electron charge density n(x, z) using the
following expression:
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where EF is the Fermi energy and the index mr represents
traveling modes from lead r injected with energy Ev

β , calcu-
lated as part of the QTBM methodology. Fξ represents the
Fermi-Dirac integral of order ξ. Additionally, the hole density
is calculated using the following semi-classical expression:
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where mh and Eg are the hole mass and band gap of Si,
respectively.

The different charge distributions, electrons, holes and
ionized dopants, are then used to solve the 2-D Poisson
equation to generate a ‘new’ potential which is fed into the
Schrödinger equation to form the self-consistent loop. New-
ton’s iteration scheme is used to accelerate the convergence
of the self-consistent system. Once convergence is attained,
the transport parameters can be extracted from the simulation,
as described below.

The transmission coefficient for an electron injected with
energy Ev

β from lead r is measured as the ratio of the total
transmitted probability-flux to the total flux incident from
lead r, integrated over the device cross-section. The 2-D local
density of state (LDoS), Dr,v

loc(E, x, z), which is basically
the spatial variation of the DoS inside the device domain,
is calculated by assigning the 2-D electron probability dis-
tribution to the corresponding 1-D DoS of the system along
the transport direction x:
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Finally, the total drain current (per unit width of the device
in the y direction) is obtained using the following expression
[19]:
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where Sr
tot(E

v
β ,mr, v) is the total probability flux, integrated

over the device cross-section, entering the device from lead
r, ηr=D = −1 for the drain-to-source term and ηr=S = 1
for the source-to-drain term. The current-density distribution
can be similarly calculated by using the probability current
at each mesh point, instead of Sr

tot(E
v
β ,mr, v), in Eq. (6).

IV. SIMULATION RESULTS

Fig. 2 shows the simulated IDS-VGS characteristics of a 10
nm DG nMOS at 10 K and 300 K with equal VGS applied at
both gates. Characteristic CMOS behavior is observed with
fast switching action represented by a low subthreshold slope
(≈ 64 mV/dec at 300 K). For device operation deep inside
saturation, the charge-distribution plot in Fig. 3(a) shows the
occurrence of channel inversion, whereas volume inversion
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Fig. 2. IDS-VGS characteristics of a 10 nm UTB DG nMOS at 10 K and
300 K. VGS is measured with respect to the flat band voltage of the device.
VDS =10 mV.

is observed in the linear region of operation (Fig. 3(b)). The
current-density distribution, plotted in Fig. 5(a) for a VGS

deep inside saturation, illustrates the path followed by the
current. Electrons are injected in a single centered beam at
the source (drain), splitting into two when flowing through
the inversion channels, to finally merge at the drain (source).
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Fig. 3. Total charge distribution in a 10 nm UTB DG nMOS at 300 K. (a)
The dark red regions show the creation of two separate inversion channels
deep inside saturation, whereas in (b) volume inversion is seen in the linear
region of operation. VGS=0.6 V, VDS =10 mV.

Fig. 4 shows the average LDoS distribution along a cross-
section of one of the channels and the center of the device
for different injection energies (from the source contact).
The darker regions exhibit the presence of quasi bound
states created within the channel region as a result of the
2-D and field-induced confinement. An interesting feature is
the presence of sharp dips in the transmission coefficient
(T ) observed at these bound-state energies, as shown in
Fig. 4(a). Conventionally, a sharp peak in transmission is
expected at the resonant energies. On the contrary, the dips
in transmission signify occurrence of antiresonances caused
by the interaction, or configuration interaction as termed by
Fano [9], between quasi-bound states in the channel and

the continuum of injected states from the source and drain.
To understand the phenomenon qualitatively, we take into
consideration Fano’s argument [9] which states that waves
transmitted at resonating frequencies undergo a phase shift
as well as a change of magnitude. Indeed, in the DG nMOS,
we observe this resonance for electrons injected into the two
degenerate quasi-bound states in the two inversion channels:
The two paths undergo opposite phase-shifts that brings them
out-of-phase, resulting in destructive interference. Hence we
see the antiresonance dips of the transmission probability
at the bound-state energies. The fact that antiresonance is
seen only in the presence of channel inversion gives further
confirmation of our interpretation. Also, as mentioned before
in Sec. I, we observe symmetric transmission zeros in our
case, contrary to the asymmetric resonance-antiresonance line
shapes reported in other studies [11]–[13]. This is because
the DG FET structure in saturation mode of operation is
analogous to a system of coupled oscillators in which both
oscillators (inversion channels in our case) are driven by an
external force (VDS in our case), as compared to only one
driven oscillator in the latter studies.
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Fig. 4. Transmission coefficient T vs. injection energy (a) for current
injection from the source contact in a 10 nm UTD DG nMOS at 300 K.
The different colored lines correspond to the different injected subbands.
The energies are measured with respect to source Fermi level. The LDoS
distribution averaged over a cross-sectional thickness of roughly 1.3 nm in
the top channel (b) and middle of device (c) at 300 K for injection from the
source contact. VGS =1.6 V, VDS =10 mV.

Theoretically, one expects to see drops in the total drain
current at those values of the gate bias for which the
Fermi level of the device crosses the energy of one of the
antiresonance-producing bound states. However, as Fig. 4(a)
illustrates, the antiresonance features are extremely sharp
and thermal smearing prevents them from appearing in the
current-voltage (I-V) characteristics of Fig. 2 at 300 K, and
even at 10 K.

Moreover, circulations are seen in the current density
resolved for the individual injection energies (from the source
contact) at which antiresonance occurs, as illustrated in
Fig. 5(b). The even number of vortices, formed as a result
of destructive interference, leads to negligible transmission
of current at the resonating energies, while momentum con-
servation forces almost all the electrons to reflect back to
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Fig. 5. (a) Current density distribution in a 10 nm UTB DG nMOS at 300 K. (b) Current density distribution resolved for a single injection energy at 300
K. The energy is chosen to have the value at which a sharp dip in transmission occurs due to destructive interference at resonance. VGS =0.6 V, VDS =10
mV. (c) Current density distribution in the same device at 10 K. VGS =0.6 V, VDS =10 mV. The red arrows highlight the direction of the vortices. The
plots are stretched to match the aspect ratio of the device.

the injecting lead. It is important to mention here that the
total current density at 300 K does not exhibit vortices, while
faint vortices persist in the total current density at 10 K, as
highlighted in Fig. 5(c). At higher temperatures, the wider
energy window resulting from a Fermi Dirac distribution
masks the contribution of the resonating states to the total
current density.

V. CONCLUSION

In summary, we have developed a tool to simulate ballistic
quantum electron transport in DG FETs and similar devices.
The simulated UTB DG nMOS exhibits Fano interference
which results in the formation of vortices in the electron
current at cryogenic temperatures. Thermal smearing prevents
the phenomenon from manifesting itself in the I-V charac-
teristics of the device at higher temperatures. However, we
conjecture that this quantum phenomenon can be observed
at the macroscopic scale under the right experimental condi-
tions.
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