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Abstract—The paper presents a method for the first principles
calculations of polarization charge in non-equilibrium states of
silicon nanowire transistor. The method combines the density-
functional perturbation theory and piecewise equivalent model
representation which enables us to reduce the numerical burden
and eliminate erroneous contributions from the occupied elec-
tronic states. In the mean field approximation, the polarization
response of the device material is taken into consideration by
using appropriate dielectric constants in the Poisson solver. Our
results suggest that this approximation generally fails and the
electric field in the device area may give rise to a nonzero
macroscopic polarization charge which is completely ignored in
common device simulations.

I. Introduction

Recent advances in nanofabrication technology have stim-

ulated growing interest to quasi-one-dimensional transport in

nanowire (NW) structures. Silicon NWs have attracted much

attention as promising candidates for active building blocks for

nanoscale electronics and they can nowadays be fabricated by

lithography or chemical growth with good control over their

shape and composition. Therefore, it becomes important to

understand the transport properties of small SiNWs in order to

help in addressing practical issues in the design of ultra-small

SiNW devices and predict their transport characteristics. The

modelling of quantum transport in such systems requires a de-

tailed description of the electrical properties at atomistic level

including the effects of strain or localized charged defects. The

first-principles calculations based on the density functional

theory (DFT) provide comprehensive microscopic informa-

tion but their application to the transport studies requires

considerable computational resources. In common approach,

the atomistic description (tight-binding or DFT) is only used

for computing mobile charge distribution in current-carrying

states of quantum device and the polarization response of

the device material is incorporated into the Poisson equa-

tion in the mean-field approximation. However, the dielectric

constant in a strongly confined nanostructure is expected to

deviate significantly from the bulk material. Moreover, in the

nanoscale regime, one can no longer assume the local charge

neutrality of the induced polarization density and generally has

to consider a non-equilibrium polarization charge distribution

in the device channel. The density-function perturbation the-

ory provides a well established approach for calculating the

dielectric response in bulk media but its application to semi-

conductor nanostructures is much more challenging and, to

our knowledge, no such calculation has been performed so far.

In the present work we have generalized recently developed

equivalent model (EM) method [1] as to become applicable

to the perturbative calculations with the DFT Hamiltonian in

the real-space representation (RSDFT) [2]. The EM has been

originally developed as a tool to construct a low dimensional

representation for atomistic transport Hamiltonians which is

only valid within a narrow energy interval of mobile carriers.

Small size of such EM representation greatly reduces the

computational burden and allows the non-elastic effects to

be incorporated [3]. On the other hand, numerical studies of

the non-equilibrium polarization require accurate calculation

of a huge number of matrix elements between Bloch states

in a much wider energy range of complex band structure

(band folding). We extend our method to such cases by

constructing a set of small EMs which can successively cover

arbitrary energy range. We develop a perturbative approach

for such calculations and demonstrate that the piecewise EM

representation can be used for computing the polarization

response in realistic NW.

II. Effective transport model in real-space density

functional theory

The atomistic device Hamiltonian for the first-principles

transport simulations is obtained by the real-space finite-

difference pseudopotential method (RSDFT) [2]. Compared to

the conventional plane wave basis representation, the RSDFT

approach does not require the time-consuming fast Fourier

transformation and effective parallel algorithms can be imple-

mented for solving the Kohn-Sham sparse matrix equations

with smooth Troullier-Martins nonlocal pseudopotentials [4].

The method has been proven to be suitable for large scale

parallel DFT calculations in nanoscale systems of tens of thou-

sands atoms. The RSDFT calculation in a single unit structure

with periodic boundary conditions is performed in order to

obtain a self-consistent periodic atomistic local potential in

the ideal wire. The corresponding device Hamiltonian can

be represented in the form of tri-diagonal block matrix (see

Fig. 1)

Hnn = H0 + Vn; Hnn+1 = W; Hn+1n = W̃, (1)
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Fig. 1. The RSDFT-EM transformation with a low-dimensional atomistic EM
basis {Φ} which reproduces the exact solution of the Kohn-Sham equation.
The distribution of mobile and polarization charge is effectively computed by
making use of the low-dimensional transformed Hamiltonians hEM.
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Fig. 2. The band structure of EMs in a thin SiNW with diameter D = 1 nm
(red points). The solid lines correspond to the exact band structure. The left
panel shows a 45-dimensional EM for the mobile carriers at the bottom of
the conduction band. The right panel shows a larger EM for both electrons
and holes which covers ∼ 4 eV transport energy range.

where the size NRSDFT of blocks H0 and W is determined by

the number of grid points in the unit structure. The diagonal

matrix Vn represents an extra external potential. The coupling

term W originates from the long-range kinetic operator in

discrete space and the non-local interaction in separable form

which simplified required matrix operations.

The basis orthogonality problem does not arise in the RS-

DFT formalism and standard non-equilibrium Green’s function

(NEGF) technique can be used for device modelling [5]. In

this work we only consider ballistic transport and our task is to

compute self-consistently the total microscopic charge and the

external potential Vn in the device area n = 1, 2, . . ., N. The

potentials at n < 1 (source) and n > N (drain) are assumed

constant and define two leads with different Fermi energies

µS,D leading to the electric current through the device channel.

Solving the NEGF equation one obtains the drain current and

the mobile charge distribution ne(r) which must be consistent

with the Poisson equation
∑

r
′

∆r,r′Vr
′ = 4π

(

n+(r) − ne(r) − δnv(r)
)

, (2)

where ∆r,r′ is the Poisson operator ∇rǫ(r)∇r in the discrete

space, n+ is the dopant concentration and δnv is the polariza-

tion charge density.

The size of the original RSDFT Hamiltonian in Eq. (1)

can be drastically reduced in the equivalent model (EM)

representation

ΨRSDFT = ΦψEM (3)

with a rectangular basis matrix Φ constructed in such way

that Eq. (3) remains valid for any scattering solutions within a

desired energy interval [1]. The EM basis transformation gen-

erates an “equivalent” chain model with the same microscopic

properties as the original system (Fig. 1). There are generally

infinite number of EMs and their size (number of columns in

basis Φ) depends not on the original mesh density but only

on the complexity of the band structure in the target energy

interval. Figure 2 shows an example of two different EMs in a

SiNW from Fig. 1 which correspond to mobile electrons (left

panel) and both electrons and holes (right panel).

The EM method is based on a simple idea that a smooth

set of Bloch Hamiltonians H(k) can be well represented by a

moderate number of representative points in the Brillouin zone

under condition that the resulting model ensures minimum

density of states. Thus, the EM construction can be reduced

to a minimization of a certain functional in the form [1]

F[Φ] =
∑

k

Ñε1(k),ε2(k),k, (4)

where Ñε1,ε2,k represents a “smoothened” number of Bloch

energies εnk ∈ [ε1, ε2] [1].

A few modifications have been introduced to the original

formulation of the EM method in Ref. [1]. In particular,

the starting guess for the variational calculation is taken

in the form H(k0)Φψnk0
where ψnk0

is an unphysical state

automatically detected in the course of iteration. We allow

for k-dependent energy parameters ε1,2(k) in the variational

functional Eq. (4) which are adjusted at each step in order

to guarantee that the branch where εnk0
belongs does not

cross any of the energy intervals [ε1(k); ε2(k)] which ensures

effective elimination of the unphysical branch. The exact so-

lutions at necessary representative points are computed by the

FEAST algorithm [6] and the variational space is constructed

by projecting the auxiliary set H0Φ ⊕ (W + W̃)Φ to the or-

thogonal complement (RSDFT)/(EM) which can be performed

without large operations O(N2
RSDFT

),O(N3
RSDFT

). This enables

us to construct any suitable EM representation for the first-

principles study of non-equilibrium states.

III. Non-equilibrium polarization in linear response theory

In this work we mainly consider the polarization charge

δnv in Eq. (2). In sub-micron regime, this term can be

ignored since the induced polarization is well described by

the appropriate dielectric constant ǫ(r) in the Poisson operator.

However, in nanoscale regime the mean field approximation

may fail and fully quantum microscopic approach is needed.

The NEGF approach is not suitable for this purpose since it

does not guarantee mutual cancellation of states in the valence
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band. However, under normal conditions, the external field in

the device area is relatively weak and one can compute the

electron-density linear response within the density-functional

perturbation theory [7].

We take the whole device area (n = 1, 2., , ,N ) as one

supercell and consider an infinite sequence of such supercells.

The polarization charge in this auxiliary system is given by

δnv(r) = 4Re
∑

n∈v.b.
Ψ∗n(r)δΨn(r) (5)

where the first order correction to the eigenstates of the

unperturbed system is found from

(εn − HKS) δΨn(r) = δHKS(r)Ψn(r) (6)

and the perturbation term δHKS includes external potential as

well as a contribution from the exchange-correlation part of

the Kohn-Sham Hamiltonian. Equations. (5) and (6) give the

usual result for linear polarization [7]

δn = 4Re
∑

n ∈ v.b.
m ∈ c.b.

Ψm(r)Ψ∗n(r)
〈Ψm| [δHKS,HKS] |Ψn〉

(εn − εm)2
. (7)

We now assume that the polarization response is local i.e.

it does not depend on the potential outside the device area.

This assumption is consistent with the Neumann boundary

conditions in the Poisson equation and its validity can be

checked at the end of calculations. Then one can modify the

external potential outside the device area such that

δVn+N − δVn = ∆V, (8)

where ∆V is a constant shift ∼ O(µD − µS ). Since the

“perturbation” [δHKS,HKS] does not violate the translational

symmetry, one can use the Bloch eigenstates in the auxiliary

system

Ψν,n,k(r) ≡ 1
√
N
Ψν,(k+2πn)/N(r), (9)

where Ψν,k are the original normalized Bloch states in ideal

wire and n = 0, 1, . . ., N−1 is the band folding quantum num-

ber. Evaluating the commutator, we obtain the final expression

for the non-equilibrium polarization charge distribution

δn(r) =
4

NkN2
Re
∑

k

∑

nm

∑

ν∈v.b.

∑

µ∈c.b.

Ψµ,m,k(r)Ψ∗
ν,n,k

(r)

εν,n,k − εµ,m,k

×
[

〈Ψµ,m,k |δHKS|Ψν,n,k〉 + ∆(ν, µ, n,m, k)
]

, (10)

where the wave number runs over Nk sampling points k =

2πnk/Nk; nk = 0, 1, . . ., Nk−1. The matrix element in Eq. (10)

is defined by a sum over the grid points in the device area and

the surface term ∆(ν, µ, n,m, k) can be written in the form

∆(ν, µ, n,m, k) =
∆V

εν,n,k − εµ,m,k

[

〈Ψµ,m,k |W̃ |Ψν,n,k〉e−i(k+2πm)/N

− 〈Ψµ,m,k |W |Ψν,n,k〉ei(k+2πn)/N
]

. (11)

The surface contribution ∼ |µS−µD|/{(εc−εv)N} depends on the

device size and applied basis and it is normally much smaller

compared to the calculations in bulk material.
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Fig. 3. The piecewise EM representation in the valence band of a SiNW
with diameter D = 1 nm. Each member of the set in the left panel covers a
narrow ∼ 0.3 eV energy window. The right panel shows a particular member
of this set (red points). The solid lines represent the exact band structure.

IV. Numerical illustration

Computing the Bloch states and evaluating all the matrix

elements in Eq. (10) may be very challenging. The developed

EM method can be used to make such computations feasible.

In the present work, we use the EM representation in two

different ways. First, an EM for the conduction band is

implemented in order to facilitate the first-principles NEGF

calculation of the mobile carrier and charge distribution.

Clearly, this model does not work for most of Bloch states in

Eq. (10). In principle, one can enlarge the EM target window at

the price of larger computational cost (see Fig. (1)). However,

our experience shows that taking contributions only from

the upper states underestimates the polarization charge and

accurate calculations require all the branches in the valence

band. In order to optimize the computer performance, we have

constructed a set of small EMs such that each model is only

used for electronic states within an energy window with 0.3 eV

width. Figure 3 shows schematically such a set of EMs for

the whole valence band in SiNW and a particular member of

this set (EM28) for energies around −12.5 eV (right panel).

The advantage of such approach is that by keeping all the

Bloch eigenvalue problems small, one can reduce the matrix

operations to the size of the corresponding EM and effectively

evaluate Eq. (10) at many sampling points in the Brillouin

zone.

As a test, we have applied the developed approach to

model ballistic transport in a nSi MOSFET with ultra thin

channel D = 1 nm shown in Fig. 4 with LG = 6 nm and

tox = 0.5 nm. Other parameters are VSD = 0.1 V, T = 300 K,

dopant concentration in the source/drain regions is taken as

1020 cm−3. EM45 has been used for the mobile carriers since

it fully reproduces the quantum states within ∼ 0.8 eV at the

bottom of the conduction band which is more then enough at

room temperature. Usage of larger EM does not change the

results but it helps to confirm the numerical accuracy of the

first prinriple calculations in the EM representation.

To evaluate the polarization charge in Eq. (10), we use a set
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Fig. 4. SiNW MOSFET used in the simulations.
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Fig. 5. Averaged polarization charge density along the n-SiNW MOSFET
channel for two values of the gate voltage in Fig. 3 (left panel). The right
panel shows the corresponding potential profiles.

of 70 small EMs (typical size 35 – 40) for a sequence of energy

intervals which cover the whole valence band and the lowest

10 eV energy range in the conduction band. We have confirmed

that contribution from higher energies does not charge our

results. Figure 5 shows the polarization charge distribution at

two values of the gate voltage. The absolute value of δnv is

seen to be comparable with the mobile charge density and

it cannot be reproduced by simply adjusting the dielectric

parameters. Figure 5 also confirm that δnv is well localized,

although in the device with such short channel our calculations

become less accurate at stronger field (VG = −0.27 V).

Figure 6 shows the calculated IV characteristics. The black

curve corresponds to the mean field approximation (ǫSi = 11.9)

which is compared with the result of the first-principles calcu-

lations of polarization charge. The IV curve for ǫSi = 1 without

polarization is shown for comparison. A noticeable decrease of

the drain current is caused by the nonzero polarization charge

and it cannot be explained simply by the reduced value of

dielectric constant ǫ in the wire.

V. Summary

We have presented a method for the first-principles trans-

port simulations in nanowire MOSFETs. We have combined

the NEGF simulations for mobile carriers and the density-

functional perturbative calculations for the microscopic polar-

ization charge in the device area. We have modified the EM

method and developed a parallel code in order to construct a

0.0 0.1 0.2 0.3−0.3 −0.2 −0.1

Fig. 6. IV-characteristics in a n-SiNW MOSFET with LG = 6 nm, tox =

0.2 nm and D = 1 nm. The first-principles RSDFT method is only used in
the silicon core region. The black curve is obtained from standard NEGF
simulations using ǫSi = 11.9 in the Poisson equation. The red curve is obtained
by directly computing the polarization charge δnv in the silicon core from
density function perturbation theory. For comparison purpose we also show
the IV curve (gray) in a fictitious system without polarization (δnv = 0 and
ǫSi = 1).

piecewise low-dimensional EM representation for wide energy

range of RSDFT Hamiltonian which is suitable for such

calculations. The method have been tested by computing the

dielectric response in an ideal SiNW and further applied

to the non-equilibrium polarization in a SiNW MOSFET.

Our results show that standard mean-field approximation with

fixed dielectric parameters may fail since it cannot reproduce

induced macroscopic polarization charge separation in the

device channel.
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