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Abstract—Two-dimensional materials, especially Transition
Metal Dichalcogenide (TMDs), have emerged as a potential
alternative to silicon for future electronic devices. We study the
static out-of-plane dielectric constant for a range of single and
bilayer two-dimensional materials. Dielectric response of these
two-dimensional materials is studied using Density Functional
Theory (DFT). Our calculations reveal that the dielectric constant
increases with increasing chalcogen atomic number. The results
also show that the ionic contribution to the dielectric response is
much smaller compared to the electronic contribution.

I. INTRODUCTION

With the exponential increase in research towards two-
dimensional (2D) materials, a large focus lies in the study
of their electronic and optical properties [1]–[4]. Optical and
electrostatic properties of 2D materials are directly related to
their dielectric response. In addition, the electronic and optical
properties of mono-, bi- and few-layer 2D materials differ
markedly as their band structure changes significantly with
the number of layers. Thus we cannot expect bulk macroscopic
dielectric constants to accurately describe dielectric behavior
of mono-, bi- or few-layer materials.

For few-layer 2D materials such as graphene the dielectric
properties are highly influenced by the surrounding medium
[5]. Hence, one of the commonly adopted approach is to assign
2D materials the average dielectric constant of the surrounding
media [6]. This approach is without justifcation however as it
does not take into account the microscopic permittivity varia-
tions in the 2D material. Nevertheless, including microscopic
permittivity variations is essential for an accurate solution of
the Poisson equation ∇.[ε(r)∇φtot(r)] = −ρext ; where ε(r)
represents the spatial variation of dielectric permittivity.

We study the out-of-plane static dielectric constant of mono-
and bilayer 2D materials. The macroscopic dielectric constant
is computed from a microscopic permittivity. We consider a
range of 2D materials, namely trigonal prismatic and octa-
hedral transition-metal dichalcogenides (TMDs), as well as
hexagonal boron nitride (h-BN).

II. STRUCTURAL AND ELECTRICAL PROPERTIES OF 2D
MATERIALS

A. Details of DFT calculations

We calculate the structural and electronic properties of
mono- and bilayer 2D materials based on Density Functional

Theory (DFT) calculations using a plane wave basis set and
Projector Augmented Wave (PAW) pseudopotentials as imple-
mented in the Vienna Ab Initio Simulation Package (VASP)
[7]. The electron exchange correlation is treated in the gener-
alized gradient approximation (GGA) as proposed by Perdew-
Burke-Ernzerhof (PBE) [8]. Brillouin zone integrations are
performed on a k-space grid of size 8× 8× 1. The successive
layers in a supercell are separated by a vacuum region of
around 10a (a is in-plane lattice constant) to prevent any
interaction between spurious replica images. All the bilayer
structures are optimized until the variation in the total energy
of the structure is less than 10−8 eV. The effect of transverse
electric field is simulated using a sawtooth potential across
the supercell while taking into account dipole corrections
[9]. The value of the external field E0 used for calculations
is ∓0.01 eV

Å
which is small enough to ensure that the 2D

material operates in the linear response regime.
We consider both trigonal prismatic (H) and octahederally

(T) coordinated 2D materials for dielectric analysis purposes.
In a bilayer configuration the crystal structures with trigo-
nal prismatic coordination tend to align in a staggered A-
B stacking order. The two layers are shifted such that the
chalcogens in the top (B) layer align with the metal in the
bottom (A) layer. On the other hand octahedrally coordinated
2D materials tend to stack in an A-A’ stacking order where
the top (A’) and bottom (A) layers are not shifted with respect
to each other [10]. Monolayer h-BN is a planar 2D material
with honeycomb lattice structure and it also follows an A-
B stacking order in its bulk form. The structural parameters,
namely the lattice constant (a) and the thickness (t) used for
defining the monolayer 2D material structures are listed in
Table I [11].

B. Out-of-plane dielectric constant

To study both the microscopic and macroscopic static out-
of-plane dielectric constant we use the periodically repeated
external potential as proposed by Resta and Kunc [12], [13].
As the thickness of the dielectric (t) is very small compared
to the wavelength (λ) of the external applied potential, we can
employ the long wavelength limit approximation to write the
dielectric constant as the ratio of two macroscopic fields [14].
The combined dielectric response of the supercell, composed
of the 2D material under study and the surrounding vacuum,
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Fig. 1. (a) top view and (b) side view of mono layer trigonal prismatic
(H), octahedrally (T) coordinated TMDs and h-BN respectively. Multilayer
(H) coordinated TMDs stack in A-B configuration and T coordinated TMDs
stack as A-A’ configuration as illustrated in (c).

Material a () t ()
MoS2(H) 3.1604 6.25
MoSe2(H) 3.288 6.53
MoTe2(H) 3.517 7.00
WS2(H) 3.154 6.181
WSe2(H) 3.286 6.488
h-BN (H) 2.49 3.33
HfS2(T) 3.635 5.837
HfSe2(T) 3.748 6.159
ZrS2(T) 3.662 5.813
ZrSe2(T) 3.770 6.138

TABLE I
STRUCTURAL PARAMETERS USED IN OUR CALCULATIONS. a IS THE

IN-PLANE LATTICE CONSTANT AND t IS THE THICKNESS OF THE
MONOLAYER 2D MATERIAL.

is determined by the dielectric constant εSC (where SC is a
label referring to the supercell):

εSC,⊥ =
E0

Etot
(1)

Etot = E0 +Einduced (2)

where Einduced is the induced electric field in the dielectric
and E0 is the applied external field. The dielectric constant εsc
obtained from Eq. (1) represents the microscopic variations.
Etot in Eq. (2) is obtained from

Etot(z) = −∂zVinduced(z) (3)

where Vinduced is the planar average of the difference in
Hartree potential (obtained from DFT calculations) between
finite electric field and zero electric field [15], [16]. Eventually
the macroscopic dielectric constant is obtained by integrating

the microscopic permittivity function using following equa-
tions:

εsc(z) =
E0

Etot(z)
(4)

and

εSC =
1

c

∫ c/2

−c/2

1

εSC(z)
dz (5)

Substituting Eq. (4) in Eq. (5) yields the following equation:

εSC =
1

c

∫ c/2

−c/2

Etot(z)

E0
dz =

1

c

∫ c/2

−c/2

−∂zVinduced(z)

E0
dz

and finally

εSC =
1

c

Vinduced(−c/2)−Vinduced(c/2)

E0
. (6)

To illustrate the process of determining εSC, we show the
induced charge density and the induced external potential in
Fig. 2 for the case of monolayer ZrSe2 and in Fig. 3 for the
case of bilayer ZrSe2. From the induced charge density plots
for bilayer ZrSe2 (Fig. 3) we see that most of the induced
charge is concentrated around the individual layers.

C. Eliminating the contribution of vacuum to the dielectric
response

The dielectric constant (εSC) computed in the previous
section includes both a contribution of the 2D material and
the vacuum. To obtain the dielectric constant corresponding to
the 2D material we use the principle of equivalent capacitance
and thereby eliminate the vacuum contribution:

1

ε2D
= 1 +

t

c

(
1

εSC
− 1

)
(7)

In Eq. (7) ε2D is the relative permittivity corresponding to
the 2D material, assumed to have thickness t . Inevitably, the
value of ε2D depends on the value of the thickness that is
assumed. As a physically meaningful thickness value, we
employ the interlayer distance in bilayer configurations, as
computed by VASP when enabling ionic relaxation. In other
words, t in Eq. (7) is the distance between successive layers
of a bilayer 2D material. The values of thicknesses used
for various materials are listed in Table I. Going back to
our example illustrated in Figs. 2-3, the dielectric constant
of mono- and bilayer ZrSe2 are found to be 7.10 and 8.37
respectively.

The values of the out-of-plane dielectric constant for a larger
set of 2D materials, computed using Eq. (7), are listed in
Table II [17]. As can be seen in Fig. 4, hexagonal boron nitride
(h-BN) has the smallest dielectric constant of all 2D materials
with no difference between bilayer and monolayer values.
For TMDs, dielectric constants are increasing with increasing
chalcogen atomic number, i.e. εMTe2 > εMSe2 > εMS2 .
Dielectric constants increase on average by 7.5% for all
bilayers compared to their monolayer counterparts.
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Fig. 2. Monolayer ZrSe2: Induced charge (top) and induced potential (bottom)
profile across the supercell.

III. IONIC CONTRIBUTION TO THE DIELECTRIC
RESPONSE

The dielectric constant calculated in the previous section
represents only the electronic contribution to the dielectric
response as all the ions are frozen in the presence of the
electric field. To compute the dielectric constant including its
ionic component, we repeat the previous calculation permitting
the ions to relax. The ionic contribution to the dielectric
constant is computed only for monolayer 2D materials. During
the relaxation, the in-plane lattice constant and the volume
of the unit cell are kept intact but now allowing the ions to
change their position in the presence of the external electric
field. Fig. 2 shows the effect of an applied electric field
on the induced charge distribution due to change in the
position of ions for monolayer ZrSe2. This change in induced
charge density causes a change of ≈ 12% in the macroscopic
dielectric constant obtained for ZrSe2.

The dielectric constant values including and excluding the
ionic polarization (obtained from calculations) are listed in
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Fig. 3. Bilayer ZrSe2: Induced charge (top) and potential profile (bottom)
across the supercell.

Fig. 4. Dielectric constant values of monolayer and bilayer 2D materials
under study, as listed in Table II.

Table II. It can be seen from Fig. 5 that the electronic
component dominates the overall dielectric response. Also no
significant changes in the dielectric constants are observed for
2D materials with trigonal prismatic coordination when the
ionic component is included. The ionic contribution is signifi-
cant for octahedrally coordinated 2D materials as indicated by
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Material Monolayer (εe,⊥) Bilayer (εe,⊥) Monolayer (εe+i,⊥)
MoS2(H) 5.5 5.8 5.5
MoSe2(H) 7.0 7.3 7.1
MoTe2(H) 10.4 10.7 10.7
WS2(H) 5.8 6 5.9
WSe2(H) 7.4 7.8 7.4

h-BN 2.6 2.6 3.0
HfS2(T) 5.0 5.2 5.9
HfSe2(T) 6.5 6.8 7.3
ZrS2(T) 5.4 5.7 6.3
ZrSe2(T) 7.1 8.4 8.3

TABLE II
OUT-OF-PLANE DIELECTRIC CONSTANTS εe,i,⊥ FOR MONO- AND BILAYER
2D MATERIALS . εe,⊥ REPRESENTS THE ELECTRONIC CONTRIBUTION TO
THE DIELECTRIC CONSTANT WHEREAS εe+i,⊥REPRESENTS BOTH IONIC
AND ELECTRONIC CONTRIBUTION TO THE OUT-OF-PLANE DIELECTRIC

CONSTANT.

Fig. 5. Electronic and ionic contribution to dielectric response of mono layer
2D materials.

an average increase in dielectric constant values of about 18%.
This relatively significant contribution of the ionic component
to dielectric response for octahedral co-ordination as compared
to trigonal prismatic co-ordination can be attributed to the
absence of mirror symmetry in the former.

IV. CONCLUSION

We have calculated the static dielectric constant for several
TMDs and h-BN in mono- and bilayer configurations from
first principles calculations. We find that TMDs with higher
atomic number chalcogens have higher dielectric constants.
The dielectric constant increases by about 5% in bilayers
for TMDs with trigonal prismatic coordination whereas the
increase is about 10% for octahedral 2D materials with the
exception of ZrSe2 for which the increase is about 46%.
Also for all the 2D materials under study, the electronic
component dominates the overall dielectric response with the
ionic contribution being much smaller.
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