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Abstract—Plasma oscillation in a submicron gate
length field effect transistor is a promising candidate
for terahertz emissions. The transport model plays
a significant role for the simulation of the instability
leading to the self excitation of plasma oscillations.
For this purpose, the growth rate and frequency of
the plasma instability are compared using a simple
transport model based on the Euler equation and
the complete Boltzmann transport equation. The
comparison shows that the simple transport model
fails to capture important aspects included in the
Boltzmann equation concerning the generation of
plasma waves at high electric fields and low temper-
atures.

I. Introduction
Generation and detection of THz waves based on

plasma waves – electron density oscillations in time
and space – in two dimensional electron channels is
a possible way to fill the so called terahertz gap [1].
The excitation of electron plasma waves in a field effect
transistor can lead to the emission of terahertz radia-
tions which relies on the instability of the propagating
steady-state current [2]. A large body of theoretical
work based on transport equations derived from the first
two moments of the semi-classical Boltzmann Transport
Equation (BTE) exists with many simplifications like
the assumption of equilibrium transport conditions [3].
We call these kinds of approximations of the BTE
the Semiconductor Equations (SE) [4]. With the on-
going miniaturization of semiconductor devices where
distances become smaller than the mean free path of
carriers, it is essential to consider non-equilibrium trans-
port. Rather than a moments-based approach, solving
the BTE directly is much more accurate [5].

Reference [4] shows how to calculate plasma waves
at arbitrary frequencies and wave numbers by the BTE.
This paper is based on the methods developed in Ref. [6]
where the BTE is solved together with the Poisson
Equation (PE) to obtain the plasma dispersion of the
two Vlasov modes for equilibrium and non-equilibrium
states. In addition the plasma instability is calculated
according to the Dyakonov-Shur approach [2]. In this
work the accuracy of using the SE as a transport model
to get the Vlasov modes’ dispersion relation and the
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Figure 1: A symmetric double gate structure with a
quasi-2D electron gas at z = 0 in a GaAs layer and
the channel length L.

plasma instability is assessed by comparison with nu-
merical solutions of the BTE at different temperatures
for a device with a GaAs channel.

II. Approach

We consider a homogeneous electron gas in the
quasi-2D k-space of a system confined in one dimension,
as shown in Fig. 1. To be consistent with the approach of
Dyakonov-Shur, the electron gas is located in the plane
z = 0 and the channel thickness (tch) is assumed to be
negligible compared to the oxide thickness (dox).

Furthermore, we assume that the linear response
of the electronic system is sufficient to model plasma
wave propagation. Therefore all variables are split into
a stationary part and a small signal part at a complex
angular frequency and wave number [4], [6].

The two equations for the SE are the first moment
of the BTE which is the continuity equation for the
electron density, and the second moment which gives
the balance equation for the electron current density
and includes the convective derivative [7], [8]. The small
signal SE is obtained by expanding the electron density
and current density around the stationary states up to
the first order in harmonic functions [4].

The stationary BTE is solved deterministically
based on an expansion in Fourier harmonics which is
described in detail in Refs. [9], [10]. Similarly to the SE
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the small signal BTE can be evaluated by a linearization
around the stationary state [6], [10].

The analytic solution of the linearized PE yields a
small signal electric field in the x-direction which is
assumed to be independent of the z-coordinate within
the channel [4].

In order to obtain the plasma dispersion relation, i.e.
the wave number behavior as a function of frequency,
the linearized transport model – either the BTE or the
SE – and the result of the PE are solved together as a
generalized eigenvalue problem.

Using the SE as a transport model gives a dispersion
relation with two branches q+(ω) and q−(ω) which are
often referred to as Vlasov modes. The q±(ω) are the
results of the following generalized eigenvalue problem:(
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where τ is the macroscopic relaxation time of the
velocity, ω the angular frequency, q the wave number,
VT the thermal voltage, µ0 the low-field mobility, E0 the
electric field in the transport direction, e the positive
electron charge, n0 and J0 are the stationary electron
density and current density at the electric field E0,
respectively [4].

On the other hand, solving the generalized eigen-
value problem with the BTE gives us a multitude
of modes in addition to the two Vlasov modes. At
equilibrium and low frequencies two Vlasov modes are
distinguishable. By ramping up the electric field and
frequency in small steps to the desired values and com-
paring the eigenvectors, the two Vlasov modes can be
tracked and identified even for strong non-equilibrium
states [6].

To simulate the plasma excitation we use the
Dyakonov-Shur approach [2]. A device with asymmetric
boundary conditions with a short circuited source and
open drain and length L in x-direction is considered [11].
The result of applying these conditions is a complex
angular frequency of the form of ω = ω′ − jω′′, in
which the sign of the imaginary part ω′′ determines the
stability of the waves. The real part with ω′ = 2πf
defines the plasma wave’s oscillation frequency f [6].

In this paper we will investigate the possibility of
THz wave generation by self-excitation of plasma oscil-
lations; we will also show that to simulate the correct
behavior a more sophisticated transport model like the
BTE is needed.

III. Results
We simulate a homogeneous 2D double gate nMOS-

FET with a 5nm thick GaAs channel and 20nm thick
oxide depicted in Fig. 1. The non-parabolic conduction
band structure of GaAs comprises the Γ-valley, four
equivalent L-valleys, and three equivalent X-valleys.
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Figure 2: Drift velocity versus stationary electric field at
different temperatures for a GaAs quantum well using
the BTE (solid lines) and SE (dashed lines).

T (K) 300 200 77
µ0 (cm2/Vs) 5.1× 103 9.1× 103 8.7× 104

Table I: Low-field mobility µ0 for GaAs at different
temperatures

The scattering term includes the Pauli principle and
consists of elastic acoustic intra-valley, and inelastic
inter-valley phonon as well as non-isotropic polar optical
phonon scattering [12], [13].

The quasi-2D electron sheet density is n0 = 1×1012

cm−2. Oxide permittivity is set to εox = 3.9ε0. The
FEAST eigenvalue solver [14] and LAPACK library [15]
are used to compute the eigenvalues.

The electron drift velocity versus the electric field
is shown for the GaAs quantum well at different tem-
peratures in Fig. 2. The magnitude of the velocity
overshoot as well as the saturation velocity rise when
the temperature is reduced. In the SE the velocity
overshoot and saturation is neglected and the relation
between the drift velocity and the stationary electric
field (vd = µ0E0) is linear as shown in Fig. 2 with
dashed lines. Therefore the drift velocity can be larger
than the maximum velocity predicted by the BTE. Ta-
ble I shows the low-field mobility for GaAs at different
temperatures. By reducing the temperature the low-
field mobility increases.

Figure 3 illustrates the Vlasov modes calculated
by the BTE and SE for E0 = 0kV/cm at different
temperatures for real-valued frequencies. In equilibrium
we do have inversion symmetry and therefore the modes
occur in pairs with q+ = −q−. The real part of the
plasma dispersion shows a square root behavior at lower
frequencies and a linear behavior at higher ones. By
raising the temperature, the transition between the two
regions shifts to higher frequencies. At low frequencies,
the results of the BTE and SE are very similar for
E0 = 0kV/cm. The combination of higher frequencies
and lower temperatures however leads to a growing
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Figure 3: Vlasov modes for E0 = 0kV/cm at different
temperature; BTE (solid line), SE(dashed line)

difference between the two. This difference is more
obvious in the imaginary part.

Figure 4 shows the plasma dispersion of the two
Vlasov modes for a drift velocity of vd = 1 × 107 cm/s
at different temperatures. According to Fig. 2 to get
the same velocity for the SE and BTE we need to
apply different electric fields, where the BTE requires
a larger electric field. With increasing temperatures the
electric field also needs to be increased. Comparison of
the plasma dispersion shows that at lower temperatures
the SE results differ significantly from the BTE results.

As mentioned before the self-excited plasma oscil-
lation is a promising candidate to generate terahertz
waves. To investigate the plasma wave instability, we
use the Dyakonov-Shur approach [2], where the plasma
dispersion is calculated based on either the BTE or the
SE.

The imaginary part (ω′′) and real part (ω′) of the
complex angular frequency versus the drift velocity are
depicted in Fig. 5 for a device with a 60nm channel in
the transport direction. The unstable oscillations occur
when ω′′ becomes positive, and this instability can lead
to an active device and THz wave generation.

By reducing the temperature, ω′′ increases in both
cases but we can see a clear difference between the
results. ω′′ has a higher value when using the SE in
comparison to the results of the BTE. In the case of
the SE the saturation velocity is neglected and veloc-
ities much larger than the saturation velocity can be
obtained.

The drift velocity depends on the applied
drain/source bias and for large voltages velocity
saturation occurs and scattering of electrons in the
channel increases which leads to strong dissipation and
damping of the plasma waves, and consequently to a
reduction of the growth rate. There is no instability at
300 and 200K when using the BTE, but by reducing
the temperature further for instance to 77K, ω′′

becomes positive and the instability occurs. At low
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Figure 4: Vlasov modes for the drift velocity of
−107cm/s at different temperatures using the BTE
(solid line) and SE (dashed line)

drift velocity, in both cases ω′′ is proportional to the
drift velocity and the device is passive. The lower graph
in Fig. 5 shows the effect of the drift velocity and
temperature on the oscillation frequency. The BTE has
more pronounced effects on the angular frequency than
the SE.

IV. Conclusion

In this work we compared the results of the SE and
BTE for the plasma dispersion at equilibrium and non-
equilibrium and for the plasma instability based on the
Dyakonov-Shur approach. The comparison shows that
at high temperatures and low frequencies the SE results
are in good agreement with the numerical solutions of
the BTE. To simulate the plasma instability at higher
frequencies, higher wave numbers and low temperatures
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Figure 5: Imaginary part (upper graph) and real part
(lower graph) of the angular frequency for a GaAs FET
with a 60nm channel at different temperatures using the
BTE (solid line) and SE (dashed line).

are required for which the SE fails to capture the correct
behavior of the plasma waves.
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