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Abstract— The mechanism of the suppression of turn-off 
oscillation by a neutral region remaining in a silicon insulated 
gate bipolar transistor was investigated. From the AC analysis of 
the neutral region using device simulation, we found that the 
turn-off oscillation is not damped by the resistance of the neutral 
region. We proposed a model in which a current source (tail 
current) connected between the collector and emitter terminals in 
series with the capacitance can suppress the turn-off oscillation. 
The results of circuit simulation based on this model, it became 
clear that the tail current acts as a damping resistance upon the 
LC resonance circuit. We concluded that the turn-off oscillation 
is suppressed by the tail current caused by the remaining neutral 
region. 
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punch-through 

I.  INTRODUCTION 

Oscillation of current and voltage unexpectedly occurs in 
Silicon Insulated Gate Bipolar Transistors (Si-IGBTs) during 
turn-off, as shown in Fig.1. This may be due to the depletion 
layer reaching the rear n-buffer layer and completely sweeping 
out the carriers in the drift region. This is called “dynamic 
punch-through” [1-2]. This phenomenon causes EMI noise and 

device disruption. To suppress the oscillation, a neutral 
(electron-hole plasma) region has been formed during turn-off 
in experiments by improving the n-buffer layer or expanding 
the drift region [3-4]. On the other hand, there has been an 
increasing demand to make wafers of Si-IGBTs thinner to 
reduce the conduction loss to its material limit [5-6]. Therefore, 
the trade-off relation between oscillation suppression and 
reduction of on-state voltage becomes a serious issue especially 
in thin-wafer IGBTs. Nevertheless, the mechanism of 
oscillation suppression by retaining a neutral region has not yet 
made clear.  

This paper reports on our clarification of the mechanism of 
this turn-off oscillation suppression using device and circuit 
simulation. We confirmed, for the first time, that a tail current 
derived from the retention of the neutral region acts as a 
damping resistance on the LC resonance circuit. We conclude 
that the control of the amount of tail current during turn-off 
plays a crucial role in the further improvement of thin-wafer 
IGBTs. 

II. AC ANALYSIS OF NEUTRAL REGION 

A. Estimation of Dumping Resistance 
The turn-off oscillation has a strong correlation with the 

junction capacitance (Cd) and stray inductance (LS), i.e., the LC 
resonance phenomenon. It is well-known that the LC resonance 
can be damped by resistance. Therefore, we surmised that a 
neutral region during turn-off acts as damping resistance (RS). 
To verify this prediction, in this section, we compared the 
resistance of the neutral region under AC operation (RAC) and 
the critical resistance required to suppress the LC resonance 
oscillation (RSC).  

The circuit equation of the LCR series circuit with the DC 
source E can be expressed as 
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Where v(t) and i(t) are the time variation of the voltage and 
current, respectively. Equation (1) can be transformed by 
Laplace operator s into 
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Fig. 1. Simulated turn-off waveforms of thin-wafer IGBT. Inset: 
schematic diagram at time of oscillation occurrence. 
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Equation (2) can be expressed as 
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The resonance oscillation does not occur when the second term 
of the denominator in Equation (3) is less than zero (non-
resonant condition). Then, RSC can be given by 
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Setting LS=100 nH and Cd=0.1 μF which corresponds to 
depletion layer width Wd=100 μm and dielectric constant of 
silicon εS=11.7, we estimated RSC=63 Ω. 

B. Estimation of Neutral Region Resistance 
   In order to estimate RAC, AC analysis was performed 

using a Sentaurus TCAD simulation (Synopsys) model as 
shown in Fig. 2. A field-stop trench IGBT with Wd=100 μm 
was formed. Large amounts of carriers were injected into the 
drift region of Si-IGBT under on-state conditions (VGE>VTH, 
VCE>VON), where VGE, VTH, VCE and VON are the gate to emitter 
voltage, threshold voltage, collector to emitter voltage and on-
state voltage, respectively. The conductance (GAC) of the 
components connected between the collector and emitter 
terminals in an AC biased IGBT in a high injection state was 
calculated. RAC was then determined as the inverse of GAC.  

Figure 3 shows the frequency dependence of RAC. RAC was 
almost independent of the frequency and is almost the same as 
RDC, which was obtained from I-V characteristics as shown in 
the inset of Fig.3. The resonant frequency fc of the LCR series 
circuit can be expressed as 
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RAC was estimated to be approximately 6.0 mΩ at fC≈50 MHz 
(LS=100 nH, Cd=0.1 μF). This is a quite small RAC value 
compared to the dumping resistance RSC=63 Ω. These results 
indicate that the neutral region does not act as damping 
resistance. 

III. CIRCUIT SIMULATION 

A. Proposed Circuit Model 
In this section, we focus on the internal dynamics in the 

neutral region during turn-off. The stored carriers within the 
neutral region are swept out as a tail current during turn-off. 
Hence, in the remaining neutral region, enforced current flow 
toward the external circuit can be generated. We constructed an 
equivalent circuit model of the circuit between the collector 
and emitter terminals during turn-off, as depicted in Fig. 4. The 
turn-off waveforms are divided into three periods which 
correspond to the (a) on-state, (b) transition-state (tail current 
generation) and (c) off-state. In the case of the tail current 
period, Cd and current source (Itail) are connected in series. 
Since an ideal current source has infinite internal impedance 
[7], LC resonance suppression can be expected when a current 
source is connected between the collector and emitter terminals 
in series.  
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Fig. 2. Mixed mode simulation of IGBT for AC analysis. 
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Fig. 3. Frequency dependence of neutral region resistance of IGBT. 
Inset: IV characteristics for extracting resistance under DC operation. 
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Figure 5 shows a Simplorer 7.0 (ANSYS) circuit model 
with inductive load using. The IGBT model includes an N-
channel MOSFET and PNP bipolar transistor connected in a 
Darlington configuration. The detailed circuit parameters and 
device models are also shown in Fig. 5. The default values of 
the device models (NMOS6, PNP6 and Diode60) were used.  

To verify our proposed model, we prepared three models of 
circuit topology between the collector and emitter terminals: Cd 
(Type A), Cd and Itail connected in parallel (Type B), Cd and Itail 
connected in series (Type C), as shown in the upper portion of 
Fig. 6. The equations for determining Itail are shown in the 
lower portion of Fig. 6. Itail has an initial current value at the 
time t0 (Itail0) and afterwards this decays exponentially with a 
certain time constant (τtail). t0 was defined as the time of 
maximum surge voltage. In this simulation, t0=31.05 μsec, 
Itail0=50 A, τtail=1 μsec were selected as tail current parameters. 
Itail was set in accordance with the state transition model. 

B. Simulation Results 
Figure 7 shows the simulated turn-off waveforms with the 

different types of circuit topology depicted in Figure 6. The 
components of the tail current are also shown. The turn-off 
oscillation occurred in the case of Type A. Obviously, this is 
due to the LC resonance between CCE and LS. In Type B, turn-
off oscillation also occurred even in the presence of tail current. 
This means that the turn-off waveform oscillates in the series 
circuit consisting only of CCE and LS even when Itail was also 
connected between the collector and emitter terminals. 
However, the turn-off oscillation disappeared when Itail was 
connected to the LC resonance circuit in series as seen in Type 
C. We thus confirmed that the suppression of the turn-off 
oscillation is attributed to the damping of the tail current. 

To investigate the correlation between the amount of tail 
current and turn-off oscillation in Type C, the turn-off 
waveforms were obtained with different values of the τtail and 
Itail0. Figure 8 shows the simulated turn-off waveforms with 
shorter τtail than that of Fig. 7 (c). Figure 9 also shows the 
results with decreased Itail0 in addition to shortened τtail 
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(τtail=100 nsec). In spite of the decrease of internal impedance 
resulting from the reduction of tail current level, the turn-off 
oscillation does not appear. These results indicate that even a 
small amount of the tail current during turn-off suppresses the 
turn-off oscillation.  

Wide band-gap devices such as SiC and GaN are promising 
candidates for the next generation power devices [8-9]. 
Compatibility between high speed switching and suppression 
of turn-off oscillation become an essential issue. In order to get 
the maximum benefits of adopting the wide band-gap devices, 
the aggressive utilization of the tail current should be 
considered while giving attention of switching speed and turn-
off loss. 

IV. CONCLUSIONS 

The mechanism of the suppression of turn-off oscillation 
was investigated. We focused on the tail current originating 
from the stored carriers in the neutral region. The turn-off 
oscillation was suppressed by a current source that was 
connected between the collector and emitter terminals in series 
with the capacitance. As a result, we found that the tail current 
acts as a damping resistance upon the LC resonance circuit. 
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time constant of tail current. 

Fig. 9. Simulated turn-off waveforms with different initial 
values of tail current. 


