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Effect of strain on electron mobility in graphene
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Abstract—We present a numerical study on the effect of
mechanical strain on the electron mobility and the averaged
electron velocity of graphene, where the graphene is assumed
to be suspended and the phonon scattering is the dominant
scattering mechanism. By employing the tight-binding formalism
to describe the electronic band structure in the presence of
strain and the Boltzmann transport equation to describe the non-
equilibrium carrier transport in the presence of phonon scatter-
ing, the electron mobility was found to decrease nonlinearly with
increasing the strain.

I. INTRODUCTION

Since the experimental success in the exfoliation of single
layer graphene (SLG) in 2004, various graphene-based new
functional devices have been proposed, including the bi-
layer graphene transistors, graphene nanoribbon transistors,
spin filters, gas sensors, pressure sensors, and so on [1].
Among them, the idea to engineer the electronic properties by
introducing the mechanical deformation (strain) is especially
important since it is one of special features which can be most
flexibly designed if we use graphene as base materials [2],
[3], [4], [5], [6], [7], [8]. One of the interesting device ideas
based on the mechanically strained graphene is the “gapless
switching” in locally strained graphene, where the strained
induced shift of the Dirac point in the momentum space in
one direction can cause the reflection (blocking) of electrons
at the interface between the strained/unstrained graphene in
spite of the absence of the bandgap in whole region. Such
effect can also be interpreted as the effect of the pseudo
magnetic field at the strained/unstrained interface region. It
has been reported that such pseudo magnetic field mechanism
can be utilized to realize the high on/off ratio in the strained
graphene based FET, where even the steep subthreshold swing
below 60 mV/decade is possible [4]. One important advantage
of such locally strained graphene FET over other graphene-
based FET such as graphene nanoribbon FET and the bilayer
graphene FET is that in the channel region the Dirac-type
linear (gapless) dispersion is maintained, suggesting that the
high electron mobility – one of the most important benefit
of using graphene – is maintained in the channel region.
Nevertheless, the effect of strain on the electron mobility
in graphene is not fully understood so far, although some
pioneering studies have been reported [9], [10]. With such
motivation, we study numerically the effect of mechanical
strain on the electron mobility and the averaged electron
velocity of graphene based on the semi-classical Boltzmann
equation along with the tight-binding method, with taking
into account the scattering due to the acoustic phonon and
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Fig. 1. (Left): Unit cell of graphene. (Right): Primitive lattice vectors 𝒂1,
𝒂2, and the three different hopping energies 𝑡1, 𝑡2, and 𝑡3.

the optical phonon. Flexural (out-of-plane) phonon, which is
important only in the absence of strain [10], [11], is not
considered in the present study aiming at clarifying the role
of conventional in-plane phonon modes.

II. THEORETICAL FORMALISM

A. Tight-binding formalism

Electronic properties of graphene can be determined using
a unit cell containing two atoms (A and B), which are
periodically arranged with the translational vectors 𝒂1 and 𝒂2.
In the absence of strain, they are given by 𝒂1 = 𝑡 (𝑎1𝑥, 𝑎1𝑦) =
𝑡
(√

3𝑎0, 0
)
, and 𝒂2 = 𝑡 (𝑎2𝑥, 𝑎2𝑦) = 𝑡

(√
3𝑎0/2, 3𝑎0/2

)
whereas the atomic positions of the A and B atoms in a
unit cell are given, respectively, as 𝑹A = (0, 0) and 𝑹B =
(
√
3𝑎0/2, 𝑎0/2). Here, 𝑎0 is the spacing between nearest-

neighbor atoms in unstrained graphene. In the presence of
strain, these lattice vectors are modified to 𝒂′𝑛 given by

𝑎′𝑛𝑖 =
∑
𝑗=𝑥,𝑦

(𝜀𝑖𝑗𝑎𝑛𝑗 + 𝛿𝑖𝑗𝑎𝑛𝑗), (1)

where 𝛿𝑖𝑗 is Kronecker’s delta, and 𝜀𝑖𝑗 is the strain tensor. The
position 𝑹B = (𝑅B𝑥, 𝑅B𝑦) of the B atom is also displaced
by the strain according to the strain tensor 𝜀𝑖𝑗 , so that 𝑅B𝑖 =∑

𝑗=𝑥,𝑦(𝜀𝑖𝑗𝑅B𝑗 + 𝛿𝑖𝑗𝑅B𝑗).
Once the primitive lattice vectors and the atomic positions

are given, the electronic band structures 𝜀𝑙(𝒌) [𝑙 = 1 (2) cor-
responds to the valence (conduction) band] can be calculated
by solving the eigenvalue problem

𝐻(𝒌) ∣𝜓𝑙𝒌⟩ = 𝜀𝑙(𝒌) ∣𝜓𝑙𝒌⟩ , (2)

with the 𝒌-dependent Hamiltonian

𝐻(𝒌) = 𝐻0 + 𝑒−𝑖𝒌⋅𝒂1𝐻−𝒂1
+ 𝑒−𝑖𝒌⋅𝒂2𝐻−𝒂2

+ 𝑒𝑖𝒌⋅𝒂1𝐻𝒂1
+ 𝑒𝑖𝒌⋅𝒂2𝐻𝒂2

. (3)

Here, 𝐻0 is the intra cell Hamiltonian within a unit cell
containing the A and B atoms, 𝐻+(−)𝒂1

is the hopping
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Hamiltonian from a unit cell to the right (left) nearest-neighbor
unit cell, and 𝐻+(−)𝒂2

is the hopping Hamiltonian from a unit
cell to the upper (lower) nearest-eighbor unit cell (see Fig. 1).
We employ the 𝜋-orbital model, in which only the 𝑝𝑧 atomic
orbital of each atom is taken into account to construct the
atomistic Hamiltonian. Then, we can write

𝐻0 =

(
𝜀2𝑝 −𝑡1
−𝑡1 𝜀2𝑝

)
, 𝐻𝒂1

= 𝐻†−𝒂1
=

(
0 −𝑡2
0 0

)
,

𝐻𝒂2
= 𝐻†−𝒂2

=

(
0 −𝑡3
0 0

)
. (4)

where 𝜀2𝑝 is the on-site energy originating from the 2𝑝𝑧 atomic
orbital, and is chosen to be zero. The three hopping energies
𝑡1, 𝑡2, and 𝑡3 correspond to the three different inter atom
distances shown in the right panel of Fig. 1. We note that
𝑡1 = 𝑡2 = 𝑡3 in the unstrained or uniformly strained case.
In our calculations, we employed the inter atom distance-
dependent hopping energy 𝑡𝑖 = 𝑡(𝑟𝑖) = 𝑡0𝑒

−𝛽(𝑟𝑖/𝑎0−1), where
𝛽 = 3.37, 𝑟𝑖 ≡ ∣𝑹B𝑖

−𝑹A∣ is the distance between the
A atom and its nearest-neighbor 𝑖th B atom (see Fig. 1),
𝑎0 = 0.1416 nm is the inter atom distance in unstrained
graphene [2], and 𝑡0 = 2.7 eV is the magnitude of the hopping
energy in unstrained graphene. When the strain is weak enough
such that the hopping energy is modulated only within the
linear order by strain, we can write

𝑡𝑖 = 𝑡0 + 𝛿𝑡𝑖,

𝛿𝑡𝑖 =
𝑑𝑡(𝑟)

𝑑𝑟

∣∣∣∣
𝑟=𝑎0

𝛿𝑎𝑖 = 𝑡′(𝑎0)𝛿𝑎𝑖 = −𝛽𝑡0 𝛿𝑎𝑖
𝑎0

, (5)

where the change of the bond length 𝛿𝑎𝑖 is expressed using
the strain tensor as

𝛿𝑎1 = 𝜀𝑦𝑦𝑎0,

𝛿𝑎2(3) =

(
3

4
𝜀𝑥𝑥 + 𝜎2(3)

√
3

2
𝜀𝑥𝑦 +

1

4
𝜀𝑦𝑦

)
𝑎0,

(6)

with 𝜎2(3) = + (−). In the case of uniformly strained case
(i.e., 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀, 𝜀𝑥𝑦 = 𝜀𝑦𝑥 = 0), the electronic states near
the Fermi level 𝐸F = 0 are described by the linear energy
dispersion as 𝜀𝑙(𝒌) = (−1)𝑙ℏ𝑣F∣𝒌∣, where 𝑣F is the Fermi
velocity and is expressed in the absence of the strain as 𝑣(0)F ≡
3𝑎0𝑡0/2ℏ = 8.71×107 cm/s. In the presence of uniform strain,
by using 𝑎(𝜀) = 𝑎0(1+ 𝜀) and 𝑡(𝜀) = 𝑡0(1−𝛽𝜀) we obtained

𝑣F(𝜀) = 𝑣
(0)
F [1 + (1− 𝛽)𝜀− 𝛽𝜀2], (7)

which is approximately linear in 𝜀 for the strain 𝜀 < 0.1
considered in the present study. In the present study we focus
only on the case of uniform strain.

B. Electronic transport formalism

1) Boltzmann equation and phonon scattering: In the
present study, transport coefficients are calculated based on
the Boltzmann equation, where the central quantity is the
distribution function 𝑓𝑙(𝒌, 𝑡), meaning the number of electrons
occupied in the 𝑙th band for the wavevector 𝒌 at a time
𝑡. Since we consider the spatially homogeneous system the

distribution function does not have the position argument.
In the presence of the electric field 𝑬 and the scattering
processes, the distribution function 𝑓𝑙(𝒌, 𝑡) follows from the
Boltzmann equation:

∂𝑓𝑙(𝒌, 𝑡)

∂𝑡
+
𝑒𝑬

ℏ
⋅ ∂𝑓𝑙(𝒌, 𝑡)

∂𝒌
= 𝑅𝑙(𝒌, 𝑡). (8)

Here the scattering term 𝑅𝑙(𝒌, 𝑡) is calculated starting from
the Fermi’s golden rule as

𝑅𝑙(𝒌, 𝑡) =
1

(2𝜋)
2

∫
BZ

𝑑𝑘′𝑥𝑑𝑘
′
𝑦

×
[
𝑊

(ela)
𝑙 (𝒌,𝒌′; 𝑡) +𝑊

(ine)
𝑙 (𝒌,𝒌′; 𝑡)

]
, (9)

where 𝑊
(ela)
𝑙 (𝒌,𝒌′; 𝑡) describes the elastic scattering contri-

bution

𝑊
(ela)
𝑙 (𝒌,𝒌′; 𝑡) = 𝑆

(ela)
𝑙 (𝒌,𝒌′)𝛿(𝜀𝑙(𝒌)− 𝜀𝑙(𝒌

′))
× [𝑓𝑙(𝒌′, 𝑡)− 𝑓𝑙(𝒌, 𝑡)

]
, (10)

while 𝑊
(ine)
𝑙 (𝒌,𝒌′; 𝑡) is the inelastic scattering contribution

𝑊
(ine)
𝑙 (𝒌,𝒌′; 𝑡)

=
∑
𝜎=±

∑
𝑙′

[
𝑆
(ine)
𝜎,𝑙←𝑙′(𝒌,𝒌

′)𝛿(𝜀𝑙(𝒌)− 𝜀𝑙′(𝒌
′) + 𝜎ℏ𝜔ph)

]
× 𝑓𝑙′(𝒌

′, 𝑡) [1− 𝑓𝑙(𝒌, 𝑡)]

−
∑
𝜎=±

∑
𝑙′

[
𝑆
(ine)
𝜎,𝑙→𝑙′(𝒌,𝒌

′)𝛿(𝜀𝑙′(𝒌′)− 𝜀𝑙(𝒌) + 𝜎ℏ𝜔ph)
]

× 𝑓𝑙(𝒌, 𝑡)
[
1− 𝑓𝑙′(𝒌

′, 𝑡)
]
, (11)

with the first and the second terms describing the “in-
scattering” due to electrons entering into the state (𝑙,𝒌) and the
“out-scattering” due to electrons leaving from the state (𝑙,𝒌),
respectively. The sign 𝜎 = +(−) means the phonon emission
(absorption) process. We note that 𝑆

(ine)
−,2→1 = 𝑆

(ine)
+,2←1 =

𝑆
(ine)
+,1←2 = 𝑆

(ine)
−,1→2 = 0. In the above equation, the scattering

functions 𝑆 for elastic scattering, emission scattering, and the
absorption scattering are given respectively as

𝑆
(ela)
𝑙 (𝒌,𝒌′) = 𝐶(ela) ∣⟨𝜓𝑙𝒌∣𝜓𝑙𝒌′⟩∣2

𝑆
(ine)
𝜎=+,𝑙←𝑙′(𝒌,𝒌

′) = 𝑆
(ine)
𝜎=+,𝑙→𝑙′(𝒌,𝒌

′)

= 𝐶(ine) [𝑁B(𝜔op) + 1] ,

𝑆
(ine)
𝜎=−,𝑙←𝑙′(𝒌,𝒌

′) = 𝑆
(ine)
𝜎=−,𝑙→𝑙′(𝒌,𝒌

′) = 𝐶(ine)𝑁B(𝜔op),

(12)

where

𝐶(ela) =
2𝜋

ℏ

𝐸2
D𝑘B𝑇

2𝜌mass𝑣2s
, 𝐶(ine) =

2𝜋

ℏ

𝐷2
Fℏ

2

2𝜌massℏ𝜔ph
, (13)

are the coefficients with the dimension [energy⋅length2/time],
with 𝐸D being the deformation potential to characterize the
acoutic phonon scattering, 𝐷F the deformation field to char-
acterize the optical phonon scattering. We employed 𝐸D =
4.5 eV and 𝐷F = 1 × 109 eV/cm [12], [13]. ∣⟨𝜓𝑙𝒌∣𝜓𝑙𝒌′⟩∣2
accounts for the anisotropy factor originated from the pseudo
spin symmetry [14], [15]. 𝑁B = 1/(𝑒ℏ𝜔op/𝑘B𝑇 − 1) is the
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phonon occupation number. Other parameters are 𝜌mass =
7.6 × 10−8 g/cm−2 being the mass density in graphene,
𝑣s = 2 × 104 m/s the sound velocity in the acoustic phonon
dispersion, and ℏ𝜔ph = 164 meV the optical phonon energy of
the nearly constant optical phonon energy dispersion. Param-
eters 𝐸D, 𝐷F, 𝜌mass, 𝑣s, and ℏ𝜔ph are all strain dependent in
general. However, in the present study we take into account
the strain dependence only through 𝑣s for acoustic phonon
scattering and through ℏ𝜔ph for optical phonon scattering for
simplicity. Sound velocity was calculated to decrease linearly
with increasing the strain approximately as 𝑣s(𝜀) = 𝑣s(1 −
2.5𝜀) [16], while the optical phonon energy was estimated to
decrease approximately by 20 % by applying 10% strain [6],
so that we roughly assumed 𝜔op(𝜀) = 𝜔op(1 − 2𝜀), with 𝜀
being the ratio of uniformly applied strain.

2) Transport coefficient: In the present study, the Boltz-
mann equation was directly solved numerically employing the
finite difference scheme assuming the initial distribution as
being the equilibrium Fermi distribution. Once the distribution
function is converged, the current density, carrier density,
averaged velocity were calculated as

⟨𝑱⟩ = 𝑒

(2𝜋)
2

∑
𝑙=1,2

∫
BZ

𝑑𝑘𝑥𝑑𝑘𝑦𝒗𝑙(𝒌)𝑓𝑙(𝒌, 𝑡) = 𝑒
∑
𝑙=1,2

⟨𝑛𝑙⟩ ⟨𝒗𝑙⟩ ,

(14)

⟨𝑛𝑙⟩ = 1

(2𝜋)
2

∫
BZ

𝑑𝑘𝑥𝑑𝑘𝑦
[
𝛿𝑙,1 + (−1)𝑙𝑓𝑙(𝒌, 𝑡)

]
, (15)

⟨𝒗𝑙⟩ = 1

(2𝜋)
2

∫
BZ

𝑑𝑘𝑥𝑑𝑘𝑦𝒗𝑙(𝒌)𝑓𝑙(𝒌, 𝑡)/ ⟨𝑛𝑙⟩ . (16)

where 𝒗𝑙(𝒌) is the group velocity of the 𝑙th band calculated
as

𝒗𝑙(𝒌) =
1

ℏ

𝑑𝜀𝑙(𝒌)

𝑑𝒌
=

1

ℏ

〈
𝜓𝑙𝒌

∣∣∣∣ 𝑑𝐻(𝒌)

𝑑𝒌

∣∣∣∣𝜓𝑙𝒌

〉
. (17)

In the enough low field condition where the converged average
velocity can be regarded as linear in 𝑬, the mobility 𝜇 was es-
timated by the relation ⟨𝒗𝑙⟩ = 𝜇𝑙𝑬. where the proportionality
constant 𝜇𝑙 is the mobility.

III. RESULTS AND DISCUSSIONS

Prior to the discussion on the effect of strain, we first show
the results in the absence of strain. In Fig. 2 we show the
electric field dependence of the converged average velocity
for various electron densities: 𝑛 = 0.5× 1012 cm−2, 1× 1012

cm−2, 2 × 1012 cm−2, focusing on the lower field regime.
The calculated average velocities increased rapidly first as the
electric field is turned on, and saturated finally [12], [17], [18].
The negative differential conductance, observed in the lower
electron density case, can be interpreted to be caused by the
extremely weak scattering in the weak field regime (because
of the small density of states) and the electric field induced
increase of the optical phonon scattering events [18]. Next,
the slope in the rapidly increasing regime, that is mobility,
was steepest for lowest density case and became moderate
with increasing electron density.

Fig. 2. Averaged velocity ⟨𝑣𝑙=2⟩ for conduction band electron as function of
the electric field. Results for various values of electron density are compared.

ε
ε
ε

μ

Fig. 3. Electron mobility as a function of the electron density. Results in the
absence and the presence of the strain (uniform strain) are compared.

In Fig. 3 we plotted the electron mobility, evaluated from
the slopes in the rapidly increasing regime in Fig. 1 (we
evaluated them using the velocities at the electric field 0.01
kV/cm) together with the results in the presence of the strain.
The value of mobility for low density 𝑛 = 0.5 × 1012 cm−2

reached almost 2 × 106 cm2/V⋅s. As increasing the electron
density, the mobility decreased gradually, and became around
2×105 cm2/V⋅s for 𝑛 ∼ 10×1012 cm−2. The decrease of the
mobility against the electron density was a result of increase
in the scattering rate for electrons at the higher Fermi energy,
which in turn is originated from the larger density of states and
thus the larger numbers of final states. Figure 3 also exhibits
that the mobility overall decrease the applying the strain.

Figure 4 shows the electron mobility as a function of the
strain ratio 𝜀 for three different electron densities. Here it was
seen that the mobility decreases nonlinearly with increasing
the strain especially when the electron density is lower. One
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ω

μ

ε

Fig. 4. Strain ratio dependence of the electron mobility for three different
electron density. For comparison, results without taking into account the strain
dependence of the sound velocity and the optical phonon energy are also
plotted by dashed lines for 𝑛 = 5× 1011 cm−2.

ε
ε
ε

Fig. 5. Electric field dependence of the averaged electron velocity in the
absence and the presence of the strain. Electron density was set to 𝑛 =
5× 1011 cm−2.

of the possible origins behind the decrease of mobility is
obviously the strain induced decrease of the Fermi velocity,
which is expressed by Eq. (7) and is approximately linear for
the small strain considered here, meaning that the decrease of
the mobility seen in Fig. 4 was not only due to the decrease
of the Fermi velocity. For comparison, the mobility without
taking into account the strain dependence of the sound velocity
and the optical phonon energy were also plotted in Fig. 4 by
dashed line, which still indicated moderate nonlinear decrease
and steeper than the decrease rate [(1 − 𝛽)𝜀 = −2.37𝜀] of
Fermi velocity in Eq. (7), suggesting that the strain dependence
of the phonon dispersion significantly influences the mobility.
Moderate nonlinear behavior in constant 𝑣s, 𝜔op model can be
interpreted as being originated from the increase of scattering

rate, which in turn is caused by the increase of density of
states via the increase of Fermi velocity.

Finally in Fig. 5 we compared the electric field dependence
of the averaged electron velocity in the absence and the
presence of the strain. Electron density was set to 𝑛 = 5×1011

cm−2. Here we found that the negative differential conduc-
tance seen in the low field regime for zero strain case was
gradually diminished by increasing the strain. This is due to
the strain induced enhancement of the scattering in the lower
field regime discussed in Fig. 4. Also, the saturation velocity
became smaller with increasing the strain. Such behavior can
be interpreted as mainly caused by the decrease of the optical
phonon energy due to strain.

IV. CONCLUSION

We studied numerically the effect of mechanical strain
on the electron mobility and the averaged electron velocity
of suspended (pristine) graphene, taking into account the
electron-phonon scattering. By using the tight-binding formal-
ism to calculate the electronic band structure in the presence
of strain and the Boltzmann transport equation to calculate
transport characteristics in the presence of phonon scattering,
we found that the electron mobility decreases nonlinearly with
increasing the strain, meaning that the strain influences the
mobility not only through the decrease in the Fermi velocity
but also through the increase in the phonon scattering events.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Nos.
24656234, 22104007, 25289102, 24656235, and 15H03523.

REFERENCES

[1] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab,
and K. Kim, Nature, 490, 192 (2012).

[2] V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009).
[3] S. Souma, Y. Ohmi, and M. Ogawa, J. Comput. Electron. 12, 170 (2013).
[4] S. Souma, M. Ueyama and M. Ogawa, Appl. Phys. Lett. 104 213505

(2014).
[5] A. Mehdipour, K. Sasaoka, M. Ogawa and S. Souma, Jpn. J. Appl. Phys.

53 115103 (2014).
[6] K. Tada, T. Funatani, S. Konabe, K. Sasaoka, M. Ogawa, S. Souma, and

T. Yamamoto1, Jpn. J. Appl. Phys. 56, 025102 (2017).
[7] Y.-H. Lee and Y.-J. Kim, Appl. Phys. Lett. 101, 083102 (2012).
[8] H. Tomori, A. Kanda, H. Goto, Y. Ootuka, K. Tsukagoshi, S. Moriyama,

E. Watanabe, and D. Tsuya, Appl. Phys. Exp. 4 075102 (2011).
[9] R. Shah and T. M. G. Mohiuddin, Proceedings of the World Congress on

Engineering 2011 Vol II (2011).
[10] E. Mariani and F. von Oppen, Phys. Rev. B82, 195403 (2010).
[11] T. Gunst, K. Kaasbjerg, and M. Brandbyge, Phys. Rev. Lett. 118, 046601

(2017).
[12] H. Hirai, H. Tsuchiya, Y. Kamakura, N. Mori, and M. Ogawa,

J. Appl. Phys. 116, 083703 (2014).
[13] K. M. Borysenko, J. T. Mullen, E. A. Barry, S. Paul, Y. G. Semenov,

J. M. Zavada, M. B. Nardelli, and K. W. Kim, Phys. Rev. B 81, 121412(R)
(2010).

[14] E. H. Hwang and S. Das Sarma, Phys. Rev. B77, 115449 (2008).
[15] T. Fang, A. Konar, H. Xing, and D. Jena, Phys. Rev. B84, 125450 (2011).
[16] Y. A. Baimova, S. V. Dmitriev, A. V. Savin, and Y. S. Kivshar’, Physics

of the Solid State 54, 866 (2012).
[17] J. Chauhan and J. Guo, Appl. Phys. Lett. 95, 023120 (2009).
[18] R. S. Shishir and D. K. Ferry, J. Phys.: Condens.. Matter 21 344201

(2009).


