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Abstract—This paper compares the results of two dif-
ferent ab-initio approaches to simulate electronic transport
through nanostructures. The first one is real-time time-
dependant density functional theory, the second one the
Non-Equilibrium Green’s Function formalism. Both meth-
ods are applied here to the computation of the channel
resistance of a carbon nanotube placed between two Pd
electrodes. A remarkably good agreement between them is
found.

I. INTRODUCTION

Real-time time-dependant density functional theory
(RT-TDDFT) is a powerful method to simulate electronic
processes from first principles. The method is based on
the integration of the time-dependant Schrödinger equa-
tion at the DFT [1, 2] level of accuracy. It is non-perturbing
and does not need a steady electronic state, thus allowing
for the investigation of a wide range of phenomena
such as transient regimes. Furthermore, RT-TDDFT can
be expanded to Ehrenfest molecular dynamics (EMD),
which generalizes this technique to include atomic core
movements.
In this paper, after briefly introducing the approach,
we compute the transport properties of a metallic car-
bon nanotube (CNT) embedded between two Pd con-
tacts with RT-TDDFT and compare the results with
those obtained via the Non-equilibrium Green’s function
(NEGF) [3]–[5] formalism combined with DFT. NEGF
is a well-established method in the field of device
simulation [6], contrary to TDDFT, which usually finds
application in the computation of absorption spectra.
A good agreement between both simulation methods is
demonstrated when considering the channel resistance of
the considered CNT device in the ballistic limit of trans-
port. To the best of our knowledge such a comparison [7, 8]

as well as RT-TDDFT simulations for the purpose of
transport in general [9]–[13] have so far only been done
for small systems, not realistic CNT structures composed
of more than 1000 atoms.

II. METHODS

RT-TDDFT explicitly propagates the electronic wave-
function of the inspected structure over time. The equa-
tion describing the propagation is [14]:

ȧja = −
∑
βγ

iS−1
αβHβγa

j
γ , (1)

with S being the overlap matrix, aj the coefficients of the
jth molecular orbital when the wave-function is expressed
as a linear combination of atomic orbitals, here contracted
Gaussian-type orbitals (GTO), i.e.

ψj(r, t) =
∑
a

ajαφα(r −RAα), (2)

finally, in Eq.(1), H is the Kohn-Sham Hamiltonian [2]:

EKS [ρ[{ψj}]] =

Ts[{ψj}] + Eext [ρ]+ECoul [ρ] + EALDAxc [ρ],
(3)

where Ts[{ψj}] is the kinetic, Eext [ρ] the external,
ECoul [ρ] the Coulomb, and EALDAxc [ρ] the exchange-
correlation energy within the adiabatic local density ap-
proximation (ALDA).

As an illustration of the method, electron transport
through the metallic carbon nanotube placed between
two palladium contacts of Fig. 1 is investigated. For the
RT-TDDFT calculation a voltage is applied through two
planes of fixed electrostatic potential [15], one on each
side of the system. This potential difference induces a
current from one side to the other. It has been shown that
such closed boundary conditions can correctly produce a
temporary steady-state [16, 17].
RT-TDDFT and EMD have been implemented in the
CP2K DFT package [18, 19]. The software has been re-
cently expanded to exploit sparsity by propagating the
density matrix instead of the wave-function itself. This
allows for a better scaling of the computational time for
large atomic systems [20]. The NEGF calculations have
been performed at the DFT level via the coupling of
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Fig. 1. Simulation Setup for the calculation of the current through a
metallic (6,6) carbon nanotube. The planes on the side of the system
are constraints for the Poisson equation solver, where the potential is
fixed. The palladium contacts serve as a reservoir from which electrons
are taken away from/added to the system, during the simulation. The
length of the nanotube is approximately 2.5 nm and the width of the
contacts about 1.3 nm each. The structure is composed of a total of
1008 atoms, which corresponds to a Hamiltonian and overlap matrix
of size 22320 x 22320.

CP2K and the OMEN [21]–[23] quantum transport code. In
both cases, a DZVP basis set was used with 25 GTO
per Pd atom and 13 GTO per C atom. Goedecker-Teter-
Hutter (GTH) pseudopotentials [24] were used to simulate
the atomic cores and the inner electrons. The exchange-
correlation energy was calculated through the Perdew-
Burke-Ernzerhof (PBE) [25] GGA functional. The plane-
wave cutoff for the calculation of the electrostatic and
the exchange-correlation energy was set to 300 Rydberg.
The time step for the RT-TDDFT simulation was limited
to five attoseconds per step, and the wave-function was
propagated using the enforced time-reversible symmetry
(ETRS) propagator [26]. The filtering threshold for the
Hamiltonian, the overlap, and the density matrices was
10−12.

III. RESULTS

At the beginning of the RT-TDDFT simulation the
ground-state density is calculated and used as starting
point for the electronic wave-function. During the evolu-
tion of the system, following the application of a bias of
0.25 V, three stages are observed (Figs 2 and 3). Initially
the field is constant across the system, which causes a
uni-directional current across both the contacts and the
tube. After approximately 100 attoseconds the field in
the metallic contacts vanishes as a result of the contact
polarization. At this point, the current inside the contacts
is rather chaotic, but it is uniformly distributed in the
nanotube, as the electric field. The current leads to an
accumulation of charges at the boundaries of the device.
These charges shield the applied voltage and therefore
the field across the tube slowly decreases, followed by

Fig. 2. Visualization of the current through the CNT structure,
taken at 25, 500 and 5000 (top to down) attoseconds simulation time.
The color indicates the direction of the current, blue for right to left
propagation, red for left to right.

the current intensity. In the final stage the system reaches
an equilibrium. The accumulated charges completely hide
the potential difference and no effective current or field
remains inside the CNT.
The resistivity of the nanotube can be extracted from

the change in charges on the contacts as a function of
the time. We used two methods (Fig. 4) to calculate
the resistivity and derived a value of 10.1 and 11.4 kΩ,
respectvely, which is close to the resistance of 12.9 kΩ,
which is obtained at quantum conductance. The first
method focuses on the initial phase of the simulation,
while the second extracts the resistance from the total
simulation, through an equivalent circuit model. The good
agreement between both methods is interesting, since the
simulation is longer than the time it takes for backscatter-
ing to occur inside the contacts. The dependence of the
resistivity on the voltage has been carefully analysed by
performing simulations at different applied voltages and
the system was found to be ohmic, as expected from a
metallic nanotube.

For the NEGF simulations the contacts must be ex-
panded with more layers of palladium atoms to allow
for the introduction of open boundary conditions. The
initial wave-function is obtained from a CP2K energy
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Fig. 3. Evolution of the electrostatic potential (dashed blue lines) and
electronic density (solid green line) over time. Initial state (t=0) (top).
Changes in electrostatic potential and electronic density between the
initial state and the one after at 25 (middle-top), 500 (middle-bottom),
and 5000 (bottom) attoseconds.
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Fig. 4. Extraction methods for the device resistance based on the
electric charge that moves from one metal contact to the other as a
function of time. (solid black line) First method: The resistance is
calculated from a linear fit of the charge transfer at t=0 (dash-dotted
red). Second method: The resistance is estimated from a circuit model,
as illustrated in the inset (dashed blue line). The circuit is composed of
two capacitors that account for the coupling between the planes with
a fixed potential and the Pd contacts and of a resistor that corresponds
to the nanotube channel. The analytical solution of the circuit is an
exponential function of the form n(t) = CV

2
(1− exp−

2t
RC ).

Fig. 5. Nanotube structure with various defects introduced. The
resistances have been calculated with the first method from Fig. 4
(time step: 1 as, potential: 1 V) (top) Hydrogen atoms added at the
Pd/nanotube interface. (middle, bottom) Stone-Wales defects inside
the nanotube in two different orientations.

minimization. The transmission probability through the
CNT structure is then calculated semi-self-consistently at
zero bias (low-field approximation) and 300 Kelvin in
the post-SCF phase. The obtained NEGF resistance is
equal to 11.1 kΩ, a result very close to the one derived
from RT-TDDFT, thus confirming the validity of the latter
approach for transport calculations.
Furthermore, the impact of several defect types (e.g.
hydrogen atoms at the metal/CNT interface or Stone-
Wales defects [27]) (Fig. 5), in the nanotube and the
contact regions, was studied. None of the considered con-
figurations was found to significantly alter the resistance.

IV. CONCLUSION

We have determined the electric resistance of a carbon
nanotube connecting two metallic contacts using two dif-
ferent approaches, RT-TDDFT and NEGF. The calculated
electric resistances are in good agreement. This supports
the usage of RT-TDDFT/EMD as an efficient alternative
to NEGF for the simulation of electronic processes from
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first-principles, RT-TDDFT also has the advantage that it
can be applied to non-steady-state cases, such as transient
regimes. In the future, larger and semiconducting instead
of metallic systems will be investigated.
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