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Abstract—To get an accurate prediction of the geometry and 
electronic structure of two-dimensional materials, the use of 
functionals for the exchange-correlation and the van der Waals 
corrections are consequential. We present a more rigorous 
simulation procedure by adopting different 
exchange-correlation functionals for geometry relaxation and 
electronic structure calculation. As the results, by using 
Perdew-Burke-Ernzerhof (PBE) functional, the geometry and 
the bandgap of the bulk transition metals dichalcogenides can 
be satisfied in comparison with the experimental measurement. 
It should, however, incorporate the Heyd-Scuseria-Ernzerhof 
(HSE06) functional and DFT-D2 van der Waals correction at 
the same time to reproduce a close geometry and bandgap of 
bulk black phosphorus (BP). A large cell calculation for BP, 
such as contact engineering and doping engineering, can thus 
take the advantage of accuracy while remains time efficiency. 
 

Index Terms— van der Waals, exchange-correlation 
functionals, density functional theory, two-dimensional 
material. 

I. INTRODUCTION 
ver since the discovery of graphene, two-dimensional 
(2D) materials are emerging as a promising candidate to 
the end-of-road-map silicon-based semiconductor 

industry [1-3]. 2D materials have a gap between each layer, 
so called van der Waals gap, where the individual layer bonds 
with others through a weak van der Waals interaction. Among 
then, transition metals dichalcogenides (TMDs) and black 
phosphorus (BP) equip with a layer-dependent and favorable 
bandgap and a monolayer limit making it potential in the 
optoelectronic devices. Moreover, the naturally ultra-thin 
body thickness of these materials prevents the mobility 
degradation from surface scattering which brings the 
opportunity to the next-generation nanoelectronics [4], [5]. 
To get a first-hand prediction to the aforementioned 
properties, the density functional theory (DFT) with a 
pseudopotential framework has become a reliable and 
dominant procedure [6]. Based on the calculated geometry 
and the electronic structure, the DFT can be further extended, 
which is the density functional perturbation theory (DFPT), to 
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simulate the phonon-interaction [7], the impact of the electric 
field [8], the dielectric constant [9]. Therefore, it is an 
consequential task to approach the accurate geometry and the 
electronic structure of the desire material at the first place. 
However, the exchange-correlation energy and the non-local 
van der Waals interaction make the 2D materials hard to be 
modeled. In the simulation, the conventional local or 
semi-local DFT is not enough to accurately describe the 
charge dispersion between van der Waals gap. Although 
several theoretical researches had been done by adopting the 
van der Waals corrections [10-13], the impact of van der 
Waals correction on structural and electrical characteristics 
remains unclear. Even more important, would it introduce an 
extra strain on the geometry? Should we need to adopt the 
geometry relaxed by the van der Waals correction when 
calculating the electronic structure? 

To solve these questions, we benchmark different types of 
van der Waals corrections on the 2H phase molybdenum 
disulfide (MoS2), molybdenum diselenide (MoSe2), 
molybdenum telluride (MoTe2), and black phosphorus (BP) 
by looking at its lattice vectors in the three directions, volume, 
and bandgap. The bulk structure of these materials is 
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Fig. 1. The top and side view of MoX2 (above) and BP (below) geometry. a, 
b, and c are the lattice vectors in three directions. 
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investigated because of the availability and consistency of 
experimental data.  

We find out that the Perdew-Burke-Ernzerhof (PBE) 
functional without a van der Waals correction can well 
reproduce the bandgap of the TMDs at the expense of 9% 
overestimation on the layer-to-layer direction. However, if 
the one uses the van der Waals correction, the geometry is 
perfectly reproduced but the bandgap is overestimated by 
20%. For the black phosphorus, although DFT-D2 and 
DFT-D3 van der Waals corrections yield accurate lattice 
geometries, none of the proposed method bring a close 
bandgap. By using the hybrid functional and DFT-D2 van der 
Waals correction, both the geometry and the electrical 
characteristic match the experiments with a deviation less 
than 4%. 

II. COMPUTATIONAL DETAILS 
The simulation of TMDs and BP are carried out under the 

spin-polarized density functional theory framework, where 
the projector augmented-wave (PAW) pseudopotentials are 
used for describing the valence electrons. Three commonly 
used exchange-correlation functionals: 
Perdew-Burke-Ernzerhof (PBE), local density approximation 

(LDA), and Heyd-Scuseria-Ernzerhof (HSE06) are applied 
which are implemented in Vienna ab initio Simulation 
Package (VASP). The van der Waals correction functionals of 
vdW-DF [14-16] and DFT-D approaches, including 
opt86b-vdW, optB88-vdW, optPBE-vdW, vdW-DF2, 
DFT-D2 [17], and DFT-D3 [18], are considered for the 
different exchange-correlation functionals. The cutoff 
kinetic-energy of 500 eV is employed for the valence 
electrons, where the convergence condition for the force 
acting on each atom and the energy difference are less than 
0.01 eVÅିଵ and 10-6 eV, respectively. The Brillouin zone is 
sampled with a grid of 12 x 12 x 4 by gamma-centered 
Monkhorst-Pack algorithm.  

To compare the calculated value with the experimental 
measurement, we use the normalized displacement, which is 
calculated by xcal/xexp-1, where xcal is the computed lattice 
vectors, volume, or bandgap (Eg) and xexp is the 
corresponding experiment reference listed in Table 1. It 
measured the difference between the simulation and 
experiment in percentage. 

III. RESULTS AND DISCUSSION 
We use lattice vectors and bandgap to represent the 

structural and electronic characteristics of TMDs and BP.  

 
(a)                                                                                                                     (b) 

 
         (c)                                                                                                                     (d) 

 
Fig. 2. The normalized displacement in percentage versus different combination of exchange-correlation and van der Waals correction 
functionals for the bulk (a) MoS2 (b) MoSe2 (c) MoTe2 (d) BP. 
 



171

Fig. 1 shows the top and side view of MoX2 (above) and BP 
(below) geometry. Due to the symmetry of the primitive cell 
of MoX2, two in-plane lattice vectors are equal and denotes as 
a; whereas the lattice vector in the layer-to-layer direction (z 
direction) denotes as c. For BP, the lattice vectors of a, b, and 
c are parallel to the x (armchair), y (zigzag), and z axis, 
respectively. In the upper figure, the yellow and purple circles 
are the chalcogen (X=S, Se, Te) and molybdenum (Mo) 
atoms; while all purples circles in the lower figure are the 
phosphorus (P) atoms.  

Figs. 2 are the normalized displacement of lattice vectors, 
volume, and bandgap with a different combination of 
functionals on the bulk MoS2, MoSe2, MoTe2, and BP, 
respectively. As shown in the Fig. 2(a), the opt86b-vdW van 
der Waals correction is able to recreate the experimental 
geometry regardless of the used exchange-correlation 
functional. Both PBE and LDA exchange-correlation 
functionals yield the similar results if the vdW-DF van der 
Waals correlation functional is adopted because the 
correlation functional of vdW-DF is attribute to the mixture 
of the LDA correlation functional and the non-local 
correlation functional [19], where the exchange functional of 
generalized gradient approximation (GGA) is exploited. 
Despite the fact that the lattice vectors and volume match 
with the experiment, the bandgap is underestimated by about 
40% (0.52 eV) because an extra strain is imposed from z 
direction. The similar phenomenon can be observed for all 
applied van der Waals correction functionals. To get a close 
bandgap in comparison with the experiment, a pure PBE 
exchange-correlation functional without any van der Waals 
correction, which merely underestimates the bandgap of 2% 
(0.026 eV), is necessary. The significant difference between 
the geometry and bandgap under the same 
exchange-correlation functional means that it might risk of 
losing accuracy on electrical properties if the geometry is 
fully optimized by a van der Waals correlation functional. 
However, the significant underestimation of bandgap by van 
der Waals correction does not work for a monolayer limit 
because the overestimation of geometry is mainly in the 
layer-to-layer direction. To be more specific, originally, the 
bandgap decreases because the lattice vector in the z direction 
is compressed by using opt86b-vdW van der Waals 
correction. In the monolayer limit, the van der Waals gap 
does not exist, therefore the strain from the z direction is 
insignificant and the bandgaps obtained by the PBE and 
opt86b-vdW are the same.  

In the Fig. 2(b), different from MoS2, the optimal van der 
Waals correction functional for the geometry of MoSe2 is the 
DFT-D3 van der Waals correction. The DFT-D3 perfectly 

reproduces the experimental result. However, the extra strain 
is introduced as well and the bandgap is underestimated by 
30% (0.3 eV). Same as the MoS2, a close bandgap is retained 
by using the pure PBE exchange-correlation functional 
without any van der Waals correction. The difference 
between MoS2 and MoSe2 is that the bandgap is 
overestimated by 6% (0.06 eV) when the pure PBE is 
adopted. MoTe2, on the other hand, has an optimal 
exchange-correlation of DFT-D2 van der Waals correction 
functional for the geometry relaxation, as shown in Fig. 2(c). 
The deviation of lattice vectors and volume from the 
experiment is less than 1% but the bandgap is underestimated 
by 16% (0.14 eV). By using the intrinsic PBE 
exchange-correlation functional, the bandgap is merely 
overestimated by 3% (0.03 eV). Nevertheless, the same old 
trick cannot play again on BP as shown in the Fig. 2(d). By 
using the DFT-D2 van der Waals correction, the lattice 
vectors in three directions are consistent with the 
experimental measurement, the bandgap is underestimated by 
90% (0.28 eV). Even using the intrinsic PBE 
exchange-correlation functional, the bandgap is still been 
underestimated by 60% (0.19 eV). Since there is no available 
strategy to recover the bandgap, we then climb up the Jacob’s 
ladder [20] to seek for the improvement. First, we employed 
the HSE06 hybrid functional with DFT-D2 van der Waals 
correction for a more accurate calculation, the lattice vectors 
in three directions are matched with the experiment, most 
important of all, the bandgap is 4% (0.01 eV) overestimated 
only. However, the computational cost is very expensive for a 
supercell calculation, such as contact engineering and doping 
engineering, due to the complexity of Hartree–Fock exact 
exchange functional. To further optimize the computational 
time, a separated treatment for the geometry relaxation and 
electronic calculation is proposed. Because the geometry 
obtained by the integration of PBE and DFT-D2 functional is 
similar to the one retrieved from the combination of HSE06 
and DFT-D2 functional, where the volume of the unit cell is 
only 1.5% in difference, therefore we can simply use the PBE 
and DFT-D2 functional for the geometry relaxation. When it 
comes to the electronic structure calculation, the HSE06 is 
exploited and started from the pre-converged geometry by the 

Fig. 3. The calculated electronic structure by using the best combination of 
functionals. MoS2, MoSe2, MoTe2 are calculated by unified PBE functional; 
whereas the band structure of BP is calculated by HSE06+DFT-D2 but using 
the geometry from PBE+DFT-D2. The indirect (red) and direct (yellow) 
bandgaps are shown in the figure. 

Table 1. List of the experimental measurements on the structural 
property and bandgap.   

Materials a (Å) b (Å) c (Å) V (Å3) Eg (eV) 
MoS2 3.16 3.16 12.295 106.39 1.29 
MoSe2 3.29 3.29 12.9 120.79 1.09 
MoTe2 3.52 3.52 13.964 149.75 0.9 

BP 4.37 3.31 10.473 151.77 0.31 
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PBE and DFT-D2 functional. Surprisingly, the bandgap is 
only been undervalued by 9.6% (0.03 eV). It is worth noting 
that the bandgap of bulk BP varied from 0.3 to 0.35 eV 
[21-24], therefore, even though the deviation is large in 
percentage, the absolute difference of 0.03 eV is quite 
accurate compared with the deviation between the 
experiments. Also, by using the mixed functional in the 
different stage, researcher can easily save the computational 
time without sacrificing too much accuracy. The calculated 
electronic structures of MoS2, MoSe2, MoTe2, and BP are 
demonstrated in Fig. 3. The use of functionals are applied as 
proposed, the direct (yellow) and indirect (red) bandgap are in 
agreement with experiments [25-27].  

IV. CONCLUSION 

In the geometry optimization, there is no universal 
approach, instead, opt86b-vdW, DFT-D3, DFT-D2, and the 
integration of HSE06 and DFT-D2 show a best fit to MoS2, 
MoSe2, MoTe2, and BP, respectively. Luckily, for TMDs, the 
PBE functional can retrieve the correct bandgap (smaller than 
5%) without sacrificing too much accuracy on geometry 
(smaller than 10%). For the electronic calculation of BP, 
although the van der Waals correction gives a satisfactory 
geometry, the bandgap is underestimated for more than 60%. 
It can be improved by using the integration of HSE06 and 
DFT-D2 starting with the relaxed structure by the mixture of 
PBE and DFT-D2 van der Waals correction. The bandgap 
difference between this approach and experiment is smaller 
than 0.03 eV and the difference of unit cell’s volume is only 
2%.  
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