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Abstract—We have proposed a neutron-induced soft error rate
(SER) estimation method that incorporates machine learning with
Monte Carlo radiation transport simulation. Multiple sensitive
volumes based machine learning discriminator makes fast SER
estimation possible for a unit circuit (e.g. SRAM cell) consisting
of several transistors. The discriminator takes charges deposited
by a secondary ion to individual volumes of all the transistors
as input and outputs the discrimination result, i.e. upset or
non-upset. Supervised learning with the training data obtained
by TCAD simulations constructs the discriminator. This paper
discusses the discriminator construction for 65-nm ultra-thin-box
FD-SOI SRAM with TCAD. We experimentally demonstrate the
multiple sensitive volumes assignment is useful for building a
precise discriminator. We also discuss the critical volumes and
transistors for discriminator performance.

I. INTRODUCTION

Due to miniaturization and highly integrated VLSI, radia-
tion effects become one of the serious problems on microelec-
tronics devices. Especially in terrestrial environments, neutron-
induced soft errors become one of primary reliability issues.

Various estimation methods that estimate neutron-induced
soft error rate (SER) using Monte Carlo radiation transport
simulation have been proposed (see [1]). To simplify the
simulation model and save CPU time, most of them introduce
sensitive volume method [2]. This method considers that the
charge deposited in the sensitive volume by a secondary ion
is collected to drain node. According to the amount of the
collected charge, this method discriminates whether an SEU
occurs or not.

Aiming at more accurate discrimination, K. M. Warren
et al. introduced a multiple sensitive volumes method [3]. It
calculates the total collected charge as the weighted sum of
the charge deposited in each sensitive volume, where each
weight represents the charge collection efficiency. W. Tianqi
et al. point out the contribution of charge deposition to on-
transistor and suggest to assign a sensitive volume to on-
transistor in addition to off-transistor [4]. A problem of the
conventional multiple sensitive volumes methods is that careful
assignment of multiple sensitive volumes and characterization
of the weights are necessary before the Monte Carlo radiation
transport simulation, and sometimes those require empirical
optimization. Also, those assignment and characterization de-
pend on the supply voltage and body voltage, and hence the
Monte Carlo simulation must be executed for each voltage
configuration.

For facilitating the discriminator construction and improv-
ing its accuracy, we proposed to use machine learning tech-
nique in SER estimation in [5]. The proposed machine learning

�������

	�
�
�������	


��
�������
�


����

��
����

���������

�����

�������	
�������	
�������	


��� �����

�������	
�������	
�������	


�����������

��
������������
����

������������
���

��
������������
����

�
����

��
������


����

�������
�����������

 �
�������������

�
����
�

�

����

���������
��� !�"

Fig. 1. SER estimation flow based on machine learning.

based method decouples the Monte Carlo radiation transport
simulation and the event discrimination, and hence the same
radiation transport simulation results can be reused for various
discriminators corresponding to, for example, different voltage
configurations. On the other hand, our previous work [5] did
not show the advantage of finely discretized multiple sensitive
volumes compared with other a single or fewer volumes. In
this work, we compare the performances of the discriminators
constructed with multiple sensitive volumes and fewer sensi-
tive volumes using TCAD data for 65-nm SOTB (Silicon-on-
Thin-Buried Oxide) SRAM, and demonstrate the superiority
of the multiple sensitive volumes based discriminator, where
SOTB is a kind of ultra-thin-box FD-SOI [6]. Also, we discuss
the important volume using the discriminators constructed with
different configurations.

II. MACHINE LEARNING BASED SOFT ERROR
DISCRIMINATOR

We briefly introduce the proposed discriminator construc-
tion and its usage in SER estimation [5]. Fig. 1 shows the flow
of the machine learning based SER estimation. We can assign
multiple sensitive volumes within a single transistor, and we
can apply such an assignment to multiple transistors within a
unit circuit (e.g. a SRAM cell). There are Monte Carlo process
and learning process. Monte Carlo process executes Monte
Carlo radiation transport simulation with the information on
neutron beam and device structure. Monte Carlo simulator,
e.g. PHITS (Particle and Heavy Ion Transport code System)
in [7], outputs the dump file that contains information on
many secondary ions. Subsequently, the information on each
secondary ion in dump file is given to PHITS, and the
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Fig. 2. SRAM memory cell unit constructed in TCAD and sensitive volume
allocation in a single transistor. A latch in the cell consists of four transistors
(N1, N2, P1, P2) composing two inverters. The values of charge deposited
in the seven volumes of V1 to V7 of N1, N2, P1, and P2 are recorded for
machine learning.

amounts of charge deposited in individual sensitive volumes
are obtained.

For such a classification purpose, machine learning, more
specifically, supervised machine learning, such as support
vector machine and random forest, is suitable. In the learning
part, to construct a discriminator for upset classification, we
prepare a training data set of TCAD simulation results; ions are
injected with various directions within a unit circuit, and we
record whether an upset occurs or not and how much charge
is deposited in each sensitive volume. Then, we construct a
discriminator that tells us whether an upset occurs or not
as a function of the amounts of charge deposited in the
individual sensitive volumes and their sums. The influence of
training data selection and sensitive volumes assignment on
discriminator performance is discussed later in Section IV.

Once the discriminator is available, we can immediately
judge whether an upset occurs or not for each event simulated
in PHITS. By counting the number of upsets, we can obtain the
SER. An advantage of the proposed method is that empirical
adjustment of sensitive volumes is not necessary. Therefore,
we do not need to change the sensitive volumes assignment
for different voltage configurations.

III. DISCRIMINATOR CONSTRUCTION FOR UPSET
CLASSIFICATION

A. Simulation Setup and Data Preparation

In the learning process, we prepared the training and test
data using 3D TCAD simulator (Sentaurus of Synopsys). We
constructed a 3D model of a SRAM cell consisting of six
SOTB transistors shown in Fig. 2. This model has a 10-nm
thick SOI layer and 12-nm thick BOX layer. The depth of
the STI is 0.4 μm. We set seven sensitive volumes to each
transistor; (V1/V2) the left/right half of source region under
the gate, (V3/V4) the left/right half of SOI layer under the
gate, (V5/V6) the left/right half of drain region under the gate,
and (V7) the region under the BOX layer. An observation
that the minimum LET for upset occurrence is much different
even inside a transistor [8] motivates us to do such a fine
volume allocation. The supply voltage was set to 0.3 V. The
density of charge generation was assumed to follow a Gaussian
distribution with a standard deviation of 30 nm [9]. We
randomly injected ions whose LET was less than 100 pC/μm.
The flight length of the ion was randomly determined, where
the minimum flight length was 0.3 μm. For each simulation,
we calculated the charge deposited in each sensitive volume
and recorded the charge values and whether an upset occurred
or not as a sample. We generated 5,389 samples for training
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and test by TCAD simulation, where 562 samples among them
are upset samples. The ratio of upset samples to non-upset ones
is 0.116. Fig. 3 shows the proportion of ion samples in TCAD
ranked by order of quantity of the total charge deposited into
V1 to V7. As the total charge becomes small, the number of
upset samples decreases.

B. Discriminator Construction and Evaluation

We chose random forest as a machine learning method
since this algorithm works well even for non-linear clas-
sification problems and it can pick up the useful features,
namely critical sensitive volumes in this case. Therefore, it
requires less empirical construction and adjustment of sensitive
volumes and, in this subsection, all the sensitive volumes are
considered in the discriminator construction. More precisely,
the amounts of charge deposited in V1 to V7 and their
sums corresponding to adjacent volumes, such as V1+V2,
V1+V2+V3+V4+V5+V6, are given to machine learning as
features. We will show the advantage of multiple sensitive vol-
umes by comparing it with different discriminators constructed
with a single or fewer sensitive volumes in the next section.

We prepared training data sets, each of which consists of
300 upset and a certain number of non-upset samples randomly
selected from the TCAD simulation results. The number of
300 for upset samples was determined so that the half of
upset samples were left for test, while the number of non-upset
samples ranged from 300 to 700 to clarify the importance of
the balance between upset and non-upset samples. The sample
balance is expected to influence the ability of discriminator
to identify upsets. For each configuration of non-upset sample
numbers, we generated 20 sets of training data randomly and
constructed the discriminators.

The remaining 262 upset samples and about 3000 non-
upset samples were used for the test of the trained discrimi-
nators. In the test, we have four types of classification results.

• TP (true positive): Both TCAD and classification
results are upset.

• FN (false negative): TCAD result is upset, and classi-
fication result is non-upset.

• FP (false positive): TCAD result is non-upset, and
classification result is upset.

• TN (true negative): Both TCAD and classification
results are non-upset.
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Fig. 4. Performance of discriminator with multiple sensitive volumes.

Four metrics of accuracy, recall, precision and F -score are
defined to evaluate the performance of the discriminator.

accuracy =
#TP +#TN

NTest
, (1)

recall =
#TP

#TP +#FN
, (2)

precision =
#TP

#TP +#FP
, (3)

F -score =
2× precision× recall

precision+ recall
, (4)

where NTest is the number of samples used for the test.

Fig. 4 shows the performance of the discriminator con-
structed with multiple sensitive volumes of all the four tran-
sistors. The x-axis is the total number of training data, where
larger training data means the number of non-upset samples
increases since the number of upset samples is fixed to 300.
As shown in the figure, recall decreases from 95.8% to 93.4%
as the number of non-upset samples increases in the training
data set. This tendency is attributed to the same weight for
all the samples used in training process, regardless of its
label of upset or non-upset. On the other hand, F -score
and accuracy increase from 73.2% and 93.9% to 82.4%
and 96.5%, respectively, as the number of non-upset samples
increases. Depending on the purpose, the appropriate sample
balance may change. For overall SER estimation, recall could
be more important since a small number of upset samples
must be found from the large quantity of non-upset ones. On
the other hand, for MCU (multiple cells upset) analysis, for
example, the precise classification for each event might be
demanded.

IV. DISCUSSION ON SENSITIVE VOLUMES ASSIGNMENT

This section compares the performance of the discrimina-
tors constructed with different sensitive volumes assignments.
The same TCAD simulation results are used as either training
data or test data for various discriminator constructions and
evaluations, but some values of deposited charge are neglected
according to the assignment of sensitive volumes. The numbers
of upset and non-upset samples for training are both 300.

To make the explanation easier, we name sensitive volumes
shown in left of Fig. 2 as follows; D (drain; V5 and V6),
C (channel; V3 and V4), S (source; V1 and V2) and B
(substrate; V7). The discriminator constructed in the previous
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Fig. 5. Different configurations of sensitive volume size.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

DCSB-Small DCSB-Middle

DCSB-Large

Fig. 6. Discriminator performance comparison w.r.t. sensitive volume size.

section is called as DCSB. At the circuit level, four transistors
composing a latch are also divided into on (N2 and P1), off
(N1 and P2) and on&off (all the transistors) groups according
to their initial states of TCAD simulation. We will discuss
the selection of transistors in the last subsection whereas all
the transistors are considered in the other subsections without
additional explanation.

A. Sensitive Volume Size

We varied the size of sensitive volumes as shown in Fig. 5,
and evaluated the discriminator performance. Fig. 6 shows the
precision-recall (PR) curves corresponding to three size con-
figurations of DCSB-small, DCSB-middle and DCSB-large.
In the PR curve, the upper right represents better discrimi-
nator performance. For drawing the PR curves, we swept the
threshold value of the constructed random forest discriminator
from 0.05 to 0.95. We can see that DCSB-large has a much
poorer performance compared to DCSB-small and DCSB-
middle. Thus, multiple sensitive volumes based discriminator
construction is important for accurate classification. On the
other hand, the difference between DCSB-small and DCSB-
middle is small. For SOTB transistors, further discretization
beyond them for a larger number of sensitive volumes is not
necessary.

B. Sensitive Volume Allocation

We next evaluate the importance of D, C, S, and B,
separately. Fig. 7 shows the allocations of sensitive volumes.
DCS, DCB, CSB, and DSB are constructed such that B, S, D
or B is removed from DCSB, respectively. Fig. 8 shows the
discriminator performances. The PR curve of DCSB is almost
identical to that of DCS, which indicates the substrate B is
not important for upset classification. Next, we compare DCB,
CSB, and DSB to know which is the most important region
for classification, source S, channel C or drain D. Fig. 8 shows
that DCB has the poorest performance, which means source S
is the most important. On the other hand, drain D is the least
important. This result implies that the most sensitive region
for upset, which is generally drain D, is not necessarily the
most relevant for classification.
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Fig. 7. Sensitive volumes assignments in DCSB, DCS, DCB, CSB and DSB.
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Fig. 8. Discriminator performance comparison among DCSB, DCS, DCB,
CSB and DSB.

C. Transistor Selection

The subsections above considered all the four transistors in
the latch. Here, we discuss which transistor is more important
for upset classification. We first evaluate the importance of
on transistor group. Fig. 9 shows the performance variation
due to transistor selection. We can see off group is more
important than on group for upset classification. While the
discriminator constructed with off group is close to the one
with on&off group in high recall region, the discriminator with
on&off groups attains higher precision. Taking into account on
transistors is helpful to improve the classification precision.

We next evaluate whether off NMOS (N1) or PMOS
(P2) plays a more important role for classification. Fig. 10
shows the discriminator considering off PMOS has a better PR
curve. This result indicates off PMOS is more important for
classification whereas off NMOS is more sensitive in general
in literature. Again, the most sensitive region is not necessarily
the most critical for discriminator construction.

V. CONCLUSION

In this paper, we experimentally discussed the impact
of sensitive volumes allocation on the performance of upset
discrimination. Taking into account multiple sensitive volumes
of all the transistors gives the better classification performance,
as we expected. We also observed that the most sensitive
volume is not necessarily the most important volume in the
discriminator construction. In the future work, we will conduct
the similar evaluation to bulk CMOS and FinFET SRAMs.
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