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Abstract—A small-signal solver for junctionless nanowire field-
effect transistors, capable of doing exact simulations in the full
frequency range is presented for the first time. The solver uses
a deterministic framework and shows great stability due to the
transformation from Kkinetic energy to total energy and even/odd
splitting of the distribution function. Small-signal terminal cur-
rents are calculated using the Ramo-Shockley theorem, and the
simulation results are shown to satisfy the necessary conditions

such as being reciprocal and passive in equilibrium.

ith the 10nm technology generation being under in-
W tensive development, the change in geometry of field-
effect transistors from fin to wire is expected to further enable
device scaling due to better short-channel control as well
as high current density [1], [2]. Since working in short-
channel regimes and introducing such spatial confinements
inevitably leads to more pronounced quantum mechanical
effects, numerical investigation of these nanowire transistors
requires approaches beyond the classical drift-diffusion and
hydrodynamic models [3]. On the other hand, fully quantum-
mechanical approaches such as the density-functional theory
and the non-equilibrium Green’s function (NEGF) formalism
[4] are not suitable for simulation of devices with decananome-
ter channel lengths due to their huge computational costs.

In this regard, semi-classical simulators based on Boltz-
mann’s equation (BE) have become increasingly popular, with
the usual approach being to self-consistently solve the coupled
system of Poisson, Schrodinger, and Boltzmann equations in
Gummel-type iterations [5], [6]. Their deterministic nature
allows us to easily simulate rare events, deep-subthreshold op-
erating points, and events on completely different time scales;
an important feature that stochastic Monte Carlo simulators
lack. In [7], we presented for the first time a quadratically
converging stable full Newton-Raphson (FNR) nanowire tran-
sistor solver for the combined system of Poisson, Schrodinger
and Boltzmann equations, which was shown to be superior
to the previously presented Gummel-type iteration schemes
both in convergence behavior and in total solver time. The
main advantage of such FNR approach, however, becomes
evident when we notice how such formulation can pave the
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way towards exact small-signal analysis, i.e. once an FNR
solver is available for the stationary problem, our system of
equations is already linearized and the same derivatives can
be used in investigation of small AC perturbations covering
the full frequency range.

Hence, the first small-signal investigation of silicon
nanowire transistors based on the multi-subband determinisitc
framework in [7] is presented in this work. The paper is
organized as follows: In Section II, we briefly explain the
details of our solver and go over the techniques used for
achieving stability and precision while maintaining a relatively
low computational cost. In Section III, the small-signal solver
is validated by presenting and discussing the numerical results
of simulations. Using the obtained small-signal parameters,
device stability can be evaluated because stability factors (e.g.,
Rollets stability factor) can be easily determined. Similarly, the
ultimate limits of the device in gain and frequency figures of
merit (such as short-circuit current gain and cut-off frequency)
will be presented and discussed. Conclusions are finally given
in Section IV.

II. MODEL

Fig. 1 shows a schematic cross-sectional view of the
junctionless silicon nanowire transistor under study. The z
direction is the transport (longitudinal) direction and z, y the
transverse directions.
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Fig. 1. Two-dimensional cross sectional view of a gate-all-around junctionless
nanowire transistor along the transport direction. The oxide (assumed to be
SiO2 in this work) thickness is tox = 1nm.



A. Steady-State Analysis

The Poisson equation is solved for the electrostatic potential
in the 3D real space. The finite volume method is used
to ensure flux conservation in the discretization process. In
order to treat strong quantization effects, the time-independent
Schrodinger equation (SE) is numerically solved in z — y
slices perpendicular to the transport direction using the FEAST
eigensolver package [8].

The 1D Boltzmann transport equation is discretized using
H-transformation [9], [10], which removes the derivative with
respect to k, and aligns the energy grid with the trajectories
of ballistic carriers. Splitting the electron distribution function
into its even and odd parts on a staggered grid [10] followed
by an odd-elimination step in our system of equations, results
in the discretized free-streaming term being unconditionally
stable. Regarding the scattering term, different inter-valley and
intra-valley electron-phonon interactions are included in our
solver [11].

The coupled Boltzmann, Poisson, and Schrodinger equa-
tions are solved by the Newton-Raphson scheme, with the
unknown variables being the electrostatic potential ¢(r) and
the distribution function f“(z, H) [7]. v = (v, s) captures both
the valley index and the subband index. Since the Schrodinger
equation, being an eigenvalue problem, cannot be directly cast
into the Newton-Raphson matrix equation, the first order time-
independent perturbation theory is used to express the changes
in subband energies and wavefunctions in terms of changes
in ¢(r) and calculate the corresponding derivatives [12]. In
order to avoid divergence in the first iterations, we start the
simulation with Gummel-type iterations up to a predefined
threshold and then switch to the Newton-Raphson solver.

B. Small-signal Analysis

Since the small-signal analysis requires linearization of the
system of equations around the stationary values, its matrix
equation is closely related to Newton-Raphson equations, i.e.
apart from the time-derivative in BE, all of the coefficients
are already available since we have constructed the Jaco-
bian matrix for our Newton-Raphson system earlier. Since
the small-signal computations are often performed for many
frequencies, the steady-state solutions and the corresponding
Jacobian matrix are saved after the convergence of Newton-
Raphson system and reused at each frequency value. Hence,
the time-consuming evaluation of the Jacobian matrix is
avoided. However, carelessly moving from the continuous BE
to the discretized one might lead to unexpected problems with
the reciprocity and passivity of the small-signal parameters
in equilibrium conditions. Factorization of the distribution
function into its equilibrium and non-equilibrium parts as
explained in [13], and making sure that we have a consistent
formulation of BE and PE in small-signal sense, restores the
necessary symmetries.

The small-signal terminal currents are calculated using a
formulation of the Ramo-Shockley theorem that is consistent
with the simulation framework, i.e. one-dimensional BE along
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Fig. 2. (a) Calculated Ips — Vs characteristics of the simulated device for
different channel lengths, (b) Ips — Vpg output characteristics at different gate
biases.

the transport direction and two-dimensional SE in the trans-
verse planes [14].

III. RESULTS

For the following simulations, we have extended an irregular
2D Delauney grid in the x — y plane non-equidistantly in
the transport direction. This non-equidistant grid construction
allows us to have a better resolution near the large potential
gradients while being able to extend the n™'-regions without
adding much to the computational cost. The source/drain
regions are 60nm long each, with doping concentration of
NS‘ 2 x 10”cm™3. The channel region is doped to
Np =1 x 107ecm™3, and Lo, = Lg is assumed. In order to
correctly calculate the first-order perturbations in constructing
the Newton-Raphson system, we need to solve the SE for
all of the subbands. However, for a nanowire cross-section
of Snmx4nm, we can safely limit ourselves to the 5 lowest
subbands in the BE. Regarding the H-grid, a grid spacing of
AH = 5.24meV is chosen.

First, we demonstrate the results for steady-state simula-
tions. Fig. 2(a) and Fig. 2(b) show the transfer characteristics
of the simulated device at Vps = 0.5V for three different
channel lengths and the Ips — Vpg output characteristics for
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Fig. 3. Absolute value of admittance parameters vs. frequency at Vgg = 0.5V

and Vps = OV. |Y},| and |Y,, | are equal to the precision of 10~!4, and
cannot be distinguished from each other in the figure.
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Fig. 4. Absolute value of admittance parameters vs. gate bias at f = 10GH z.

different Vg values, respectively. Our solver shows great sta-
bility and easily produces very smooth DC curves which span
more than 10 decades of magnitude. Such deep-subthreshold
simulations are practically impossible with non-deterministic
Monte Carlo methods.

Figure 3 shows the admittance parameters versus frequency
at Vgs = 0.5V and Vps = OV, i.e. in equilibrium. For a non-
magnetized two-port, Y, = Y,; must hold in equilibrium
conditions (the reciprocity requirement), and the figure shows
that this is surely satisfied in our discretized description.

The admittance parameters versus the gate bias for Vps =
0.5V are shown in Fig. 4. The simulation results show dis-
continuities, which are artifacts of discretization in H-space.
Whenever a subband moves continuously from one energy
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Fig. 5. Small-signal current gain | H ,, | versus frequency for different channel
lengths.

box to another, discontinuities in the derivatives with respect
to electrostatic potential occur. As a result, these kinds of
discontinuities appear whenever some small-signal parameter
is plotted against a contact bias (having H -transformation
utilized in the discretization process). In fact, the stationary
quantities such as the steady-state currents shown in Fig. 2
also exhibit discontinuities in their derivatives with respect to
contact biases. But these changes are completely negligible on
scales of interest. Small-signal parameter, on the other hand,
are strongly influenced by the details of discretization schemes,
the impact of which could be made arbitrarily small by refining
the energy grid.

The small-signal current gain |H,, | = |Y5/Y 4] is ex-
tracted from the admittance parameters and plotted against
frequency in Fig. 5 for different channel lengths. Deviations
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Fig. 6. Cut-off frequency as a function of Vg for different channel lengths.
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Fig. 7. Rollet’s stability factor versus frequency for different channel lengths.

of |Ha1(f)| from the typical 1/f dependency are negligible,

and the obtained fr values for L = 10nm, 20nm, and 40nm

are fr = 398GHz, 95.9GHz, and 23.8GHz, respectively. Next,

the cut-off frequencies for these gate lengths are calculated

at different Vg values. The results, shown in Fig. 6, show

discontinuities rather similar to those observed in Fig. 4.
Fig. 7 demonstrates the stability factor defined as,

Qm{xll}m{x22} — §R{212221}
‘X12X21|

for different gate length values. Since ${Y;;} and R{Y 5}
are positive in the simulated frequency range, the device would
be unconditionally stable at frequencies in which K > 1. The
critical frequency (fy, defined as the frequency above which
the device is unconditionally stable) for the transistors with
Lg =10, 20 and 40nm were about 740GHz, 276GHz, and
91GHz at Vs = Vps = 0.5V, respectively. Consequently,
the additional stability circuits are not required for RF circuits
above these frequencies. The reduction in gate length leads to
increase in short-channel effect and has the impact on stability
performance.

K =

(D

IV. CONCLUSION

In this work, a semi-classical deterministic nanowire solver
suitable for small-signal simulations was presented. The sim-
ulation framework allows for robust and stable computations
in the complete frequency range and for a wide range of
bias conditions. The small-signal solver was validated by
presenting and discussing the numerical results of simula-
tions. The calculated small-signal parameters show reciprocity
and passivity in equilibrium conditions, and are perfectly
smooth when plotted against frequency. However, they change
discontinuously by continuously changing any quantity that
influences the steady-state potential within the device. These
minor and negligible discontinuities are direct consequences
of transforming the BE into total energy, and can be made
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arbitrarily small by refining the energy grid. Since small-signal
analysis is a vital component of modern device simulations,
the presented solver can be of great use in investigation and
prediction of nanowire devices for RF and high-frequency
applications.
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