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Abstract— Compact models are unique in the modeling 

domain in how accurate they need to be while maintaining 

significant computational efficiency. In this work, we will describe 

the requirements from a developer’s perspective and illustrate the 

challenges in meeting these requirements and solutions using 

examples.  
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I.  INTRODUCTION 

Compact models form a critical link between the 

manufacturing teams and the chip design teams by 

mathematically capturing the properties of devices that are 

manufactured at the foundry for use in circuit simulators. These 

models capture every aspect of the device including AC, 

transient and noise in a framework that is fast enough for circuit 

simulations. These models also need to meet stringent 

requirements for successful use in industrial environments [1]. 

From a model developer’s perspective these requirements, can 

be distilled as follows: (1) it should avoid regional 

approximations and provide continuous analytic expressions 

valid in all regions of operation, (2) it should be physics based 

and asymptotically correct and (3) it should support an intuitive 

physical framework that can be easily parameterized for 

accurate behavior over a range of operating conditions. 

There are many challenges in meeting these requirements. 

They begin with the fundamental transport equations that are 

often in the form of Partial Differential Equations (PDEs) and 

hence cannot be programmatically simplified to formulate 

analytical and computationally efficient equations. The 

principal approach to overcome this challenge is to find the 

most suitable transformations and approximations so that the 

PDEs can be reduced to an Ordinary Differential Equation 

(ODE). The ODE can then be solved either analytically or 

numerically to formulate the core device equation using a core 

state variable. This approach is important in modeling the AC 

and transient behavior of the device. For traditional MOSFETs 

this approach has been refined over many years, where the long 

channel device equation serves as the core equation.  The core 

state variable for these traditional MOSFET models tend to be 

either surface potential [2,3] or inversion charge [4,5]. For 

novel devices, however, the traditional approaches cannot be 

directly applied. In section II, we will showcase an approach to 

develop the surface potential equation for a double gate (DG) 

device with low effective mass.  

After developing the core device equation, the next step is to 

incorporate all the additional physics needed to sufficiently 

describe the device, into the core model, as auxiliary models. 

The accuracy of a compact model is reliant on the ability of the 

auxiliary models to match the observed phenomenon. In 

addition these must be consistent with the core device equation 

and should also meet all of the three criteria. A common 

misconception is the assumption that common textbook like 

expressions, which are often derived for physical insight, can 

be easily incorporated into the core model. In Section III, we 

will illustrate these challenges in developing a body charge for 

a doped double gate device. In addition to accuracy a physically 

derived model can often provide insights, which cannot be 

gained by simply reading the results of TCAD simulation. We 

will illustrate this aspect in Section IV with the example of the 

development of a compact model for long change DIBL. 

II. MODELING OF QUANTUM CAPACITANCE LIMITED DEVICES 

The continued search for performance gains with technology 

scaling has led to the consideration of several alternatives to 

silicon such as GaAs, GaSb and InGaAs, which offer low 

effective mass for conduction. While the low effective mass 

results in high mobility, they also limit the charge available for 

conduction because of the low Density of States (LDOS). 

Considering that these materials will likely be used in thin body 

quantum wells for short channel control, we assume a double 

gate (DG) architecture for these devices, as shown in Fig. 1a.  

 
Fig 1: DG MOS structure and capacitance representation  

From a modeling perspective the gate capacitance of a 

DG device can be modeled as shown in Fig. 1(b), where 𝐶𝑄𝑀, 

is the quantum capacitance and 𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  is the charge centroid 

capacitance. In silicon the effective mass and the degeneracy 
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result in 𝐶𝑄𝑀 >> 𝐶𝑜𝑥, hence modeling 𝐶𝑜𝑥 and 𝐶𝑄𝑀 is sufficient.  

Compact models for silicon DG devices solve the Poisson 

equation assuming Maxwell-Boltzmann distribution and 

account for 𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  by adjusting the effective oxide thickness. 

But, this approach does not work well for LDOS devices 

because they are degenerate and thickening the oxide will result 

in unphysical sensitivity to oxide thickness variations. Also, it 

is non-trivial to integrate the Poisson equation assuming Fermi-

Dirac statistics in the semiconductor film.  Hence, a two step 

approach [6] is used to solve for the surface potential. Firstly, 

the surface potential is solved by applying Gauss’ law and 

equating the charge on the gate to the charge in the 

semiconductor film. Secondly, the charge distribution in the 

semiconductor film is used to estimate a centroid based 

correction term to the oxide thickness used in the first step. 

 The charge on the gate is derived using Gauss’ law as 

follows,  

𝑄𝐺 = 𝜀𝑜𝑥𝐸𝑜𝑥 = 2𝐶𝑜𝑥(𝑉𝑔 − 𝑉𝑓𝑏 − 𝜙𝑠), (1) 

where 𝑄𝐺  is the total charge on the gate, 𝜀𝑜𝑥 is the oxide 

dielectric constant, Vfb is the flatband voltage, 𝐸𝑜𝑥  is the oxide 

field and 𝜙𝑠 is the surface potential. The charge in the 

semiconductor should be obtained by solving the Poisson 

equation. However, analytical solution of Poisson’s equation 

assuming Fermi-Dirac statistics is non-trivial. Since, the 

semiconductor is thin, the potential will be assumed to be 

uniform across the semiconductor’s thickness. The charge in an 

undoped semiconductor film is given by, 

𝑄𝑠 =
𝑞𝑚𝐷𝑒𝐾𝑇

𝜋ℏ2 𝑙𝑛(𝜉0𝜉1)  (2) 

𝜉 = 1 + 𝑒𝑥𝑝 [
𝜙𝑠−

𝐸𝑖
𝑞

−
𝐸𝑔

2𝑞

𝜈𝑡
] − 𝑒𝑥𝑝 [

−
𝐸𝑖
𝑞

−
𝐸𝑔

2𝑞

𝜈𝑡
] (3) 

Where 𝑚𝐷𝑒 is the electron density of states effective mass, k is 

the Boltzmann constant, T is the temperature, Ei is the energy 

of the ith electron subband,  Eg is the bandgap of the material. 

For the sake of brevity only the electron charge contribution is 

shown in Eqn. (2). Equating the gate charge from Eqn. (1) to 

the semiconductor charge, we obtain the surface potential 

equation as, 

2𝐶𝑜𝑥(𝑉𝑔 − 𝑉𝑓𝑏 − 𝜙𝑠) =
𝑞𝑚𝐷𝑒𝐾𝑇

𝜋ℏ2 𝑙𝑛(𝜉). (4) 

The surface potential can be solved numerically using second 

order Newton iteration from equation (4). The solution for the 

gate capacitance obtained by solving Eqn. (4) is compared 

against numerical simulation data in Fig (2), where the compact 

model overestimates the gate capacitance. This is because Eqn. 

(4) is not accounting for the fact that the charge is distributed 

across the semiconductor. Instead it treats the semiconductor 

charge as an infinitely thin sheet charge at the oxide 

semiconductor interface. Hence, we need to consider the 

realistic distribution of the charge in the semiconductor. 

 The charge distribution in the first subband is nearly a 

sinusoid. Using this information we can obtain a relationship 

[6] between surface and center potential and the charge in the 

semiconductor, as  

𝜙𝑠 = 𝜙𝑐 +
𝑄𝑠

2𝐶𝑠𝑒
𝜆   (5) 

𝜆 =
1

4
+

1

𝜋2   (6) 

where 𝐶𝑠𝑒 = 𝜀𝑠𝑒 𝑡𝑠𝑒⁄ , is the semiconductor capacitance. 

Equating the charge on the gate to the charge in semiconductor 

and using (5),  

2𝐶𝑜𝑥
𝑒𝑓𝑓

(𝑉𝑔 − 𝑉𝑓𝑏 − 𝜙𝑠) = 𝐶𝑄𝑀𝜈𝑡ln (𝜉) (7) 

𝐶𝑜𝑥
𝑒𝑓𝑓

=
𝐶𝑜𝑥

1+𝜆𝐶𝑜𝑥 𝐶𝑠𝑒⁄
  (8) 

 

 
Fig 2: Gate capacitance for a 5nm thick LDOS material 

simulated numerically assuming no wavefunction penetration 

into the oxide compared to the model. 

Comparison of the gate capacitance obtained using eqn. (7) 

against numerical simulation data, in Fig. 2, shows that the 

model now underpredicts the data. This is because quantum 

capacitance needs to be corrected for the perturbation of 

subband energy at high fields. Incorporating this perturbation 

[6] into eqn. (7), we obtain, 

2𝐶𝑜𝑥
𝑒𝑓𝑓

(𝑉𝑔 − 𝑉𝑓𝑏 − 𝜙𝑠) = 𝐶𝑄𝑀
𝑒𝑓𝑓

𝜈𝑡ln (𝜉) (9) 

𝐶𝑄𝑀
𝑒𝑓𝑓

=
𝐶𝑄𝑀

1+𝜅𝐶𝑄𝑀 𝐶𝑠𝑒⁄
  (10) 

where 𝜅 = − 1 24⁄ + 1 8𝜋2⁄ . The capacitance obtained by 

solving equation (9) matches numerical results very well.  

 Once we consider multiple subbands in the presence 

of wavefunction penetration, the approach presented so far 

become intractable. An intuitive semi-empirical expression is 

instead proposed that works not just for one subband but two 

subbands: 

𝐶𝑜𝑥
𝑒𝑓𝑓

=
𝜀𝑜𝑥

𝑡𝑜𝑥+0.7(𝑡𝑠𝑒 4)⁄ 𝜀𝑜𝑥 𝜀𝑠𝑒⁄
  (11) 

The results of the gate capacitance using Eqn. 11, matches 

numerical simulation data for a wide range of body thickness 

and effective mass as shown in Fig. 3. The proposed expression 

can be understood as follows: When only one subband is 

occupied there are 3 effects to be considered: (1) the traditional 

charge centroid term (), (2) the correction for the quantum 

capacitance term (𝜅) and (3) the effect of wavefunction 

penetration. The latter two effects result in an increase in the 

increase of effective capacitance and are taken into account by 

the 0.7 factor in Eqn. (11). The 𝑡𝑠𝑒/4 factor accounts for the 

charge centroid correction. When the second subband is 

occupied, the quantum capacitance becomes larger than 𝐶𝑜𝑥 
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and the correction based on charge centroid is sufficient. In 

compact modeling this type of approximation is critical in 

developing analytical functional forms which can then be used 

to develop the complete core I-V and C-V model [7]. 

 
Figure 3: Compact model solution based on eqn. (11) 

compared against numerical solution for a range of 

semiconductor thickness and effective mass.  

In summary, accurate compact modeling of low effective 

mass DG devices requires solution of the Poisson equation 

using Fermi statistics and the quantum effects which determine 

the charge distribution and the correction to quantum 

capacitance. The unique challenge is in using the insights, to 

develop a computationally efficient solution that is acceptable 

over the range of envisioned operation.  

III. BODY CHARGE MODELING IN DOUBLE GATE DEVICES 

Many models [2], [3], [8] have successfully used surface 

potential (SP) based modeling framework to sufficiently meet 

the compact modeling requirements in modeling planar 

MOSFETs. In the SP framework, the main challenges are (1) 

determining the body charge expression and linearization for 

drain current integration, and (2) determining the drain 

saturation voltage for solving the drain side surface potential. 

The original approximation for body charge modeling in a SP 

framework was proposed by Brews [9] as  

𝑄𝐵 = 𝐶𝑜𝑥𝛾√𝜙𝑠 − 𝑣𝑡 ,  (12)  

𝛾 =
√2𝑞𝜀𝑆𝑖𝑁𝑑𝑜𝑝

𝐶𝑜𝑥
.   (13) 

Where 𝐶𝑜𝑥, is the oxide capacitance per unit area, 𝑁𝑑𝑜𝑝 is the 

body doping, 𝜙𝑠 is the surface potential and 𝑣𝑡 is the thermal 

voltage. While eqn. (12) works well in in weak inversion, it is 

neither accurate nor amenable to continuous charge and 

capacitance model development through accumulation, 

depletion and inversion regions. Hence a modification to 𝑄𝐵 

was proposed in [10]: 

𝑄𝐵 = 𝐶𝑜𝑥𝛾√𝜙𝑠 + 𝑣𝑡(𝑒−𝜙𝑠/𝑣𝑡 − 1) . (14) 

Equation (14) is valid in all regions of operation and provides 

asymptotically correct charge expressions for accumulation and 

depletion regions and serves as the backbone of most successful 

surface potential formulations.  

The surface potential equation for a double gate MOSFET 

involves the solution of two non-linear system of equations for 

the surface (𝜙𝑠) and the center (𝜙𝑐) potential [11]: 

𝑉𝑔𝑠 − 𝑉𝑓𝑏 − 𝜙𝑠 = 𝛾√𝐹(𝜙𝑠, 𝑉) − 𝐹(𝜙𝑐 , 𝑉)  (15) 

𝐹(𝜙, 𝑉) = 𝜑 + 𝑣𝑡𝑒−𝜙𝑠/𝑣𝑡 + 𝑣𝑡𝑒(𝜙𝑠−2𝜙𝐵−𝑉)/𝑣𝑡, (16) 

where V is the quasi-fermi level along the channel, 𝑉𝑓𝑏 is the 

flatband voltage and 𝜙𝐵 is the fermi potential due to body 

doping. Another equation is needed to constrain 𝜙𝑠 and 𝜙𝑐, 

which is obtained from integrating the electric field from the 

surface to the center of the fin: 

𝜙𝑠 − 𝜙𝑐 =
𝑞𝑁𝑑𝑜𝑝𝑡𝑠𝑖

2

8𝜀𝑠𝑖
(1 + 𝑒(𝜙𝑐−2𝜙𝐵−𝑉)/𝑣𝑡 − 𝑒−𝜙𝑐/𝑣𝑡) (17) 

A more accurate relationship between 𝜙𝑠 and 𝜙𝑐 is derived 

in [11], which yields better accuracy. However, an analytic 

formulation of the body charge has not been reported in the 

literature thus far. Most models rely on treating the body charge 

in the full depletion limit, given by Eqn. (18), which works well 

in weak to strong inversion region of operation.  

𝑄𝐵 =
𝑞𝑁𝑑𝑜𝑝𝑡𝑆𝑖

2
.   (18) 

However, they need some patching functions to transition from 

full depletion to partial depletion to accumulation, which can 

make them vulnerable. Also any expression that is developed 

for body charge needs to be fully consistent with the core state 

variable formulation given by equations (15) and (17). If 𝑄𝐵 is 

not consistent with the core equations then the inversion charge 

which is obtained by evaluating the difference between in the 

gate charge and the body charge becomes inconsistent with the 

surface potential formulation. Unlike planar MOSFETs a 

charge sheet model inspired 𝑄𝐵 expression is not possible 

because low doped double gate devices are volume inverted in 

weak inversion.  

In this work we propose the following body charge functional 

form: 

𝑄𝐵 = 𝐶𝑜𝑥𝛾
√

𝜙𝑠−𝜙𝑐+𝑣𝑡(𝑒
−

𝜙𝑠
𝑣𝑡 −𝑒

−
𝜙𝑐
𝑣𝑡 )

1+𝑒(𝜙𝑐−2𝜙𝐵−𝑉)/𝑣𝑡
.  (19) 

The expression (18) produces the correct asymptotic limits in 

partial depletion case where 𝜙𝑐 0, eqn (7)  eqn(3). In strong 

inversion where both 𝜙𝑠 and 𝜙𝑐 are much greater than 𝑣𝑡, one 

show that Eqn. (19) reduces to Eqn. (18). 

In developing an expression for 𝑄𝐵 that is consistent with the 

surface potential equations (15), (16) and (17), we ensure a self-

consistent model for body charge and inversion charge that is 

continuous and valid in all regions of transistor operation.   

IV. COMPACT MODELING OF LONG CHANNEL DIBL 

In short channel devices DIBL is due to reduction of the 

barrier on the source side by the applied drain bias and the use 

halo implants reduces the field penetration and improves DIBL. 

In long channel devices, the use of halo implants actually 

increases DIBL and reduces the output impedance. This 

counter-intuitive phenomenon is critical to analog design which 

rely on high output impedance for both current mirror matching 

and amplifier gain. There is, however, limited literature 

available on this topic [12, 13].   
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 The understanding begins with the three transistor 

equivalent circuit approach. In this approach the halo region on 

the source side, the low doped region in the middle and the halo 

region on the drain side are modeled as separate transistors in 

series. Though simulations using this approach reproduce all 

the unique features of halo implanted transistors, solving them 

analytically so that the essential physics and their limits can be 

understood and implemented in a compact model presents 

significant challenges.  

 In [12] each transistor is modeled as a Transformed 

Conductance (TC) 𝐺𝑣, 

𝐺𝑣 = 𝐾0
1

𝐿
𝑒𝑥𝑝(Ψ𝑠

𝑚𝑖�̌�) .  (20) 

Where 𝐾0 has a weak dependence on the surface potential and 

can be considered as a constant, and Ψ𝑠
𝑚𝑖�̃� represents the 

potential minimum offset by 3/2𝜙𝐵 and normalized by 𝜈𝑡. 

Assuming a potential profile as shown in Fig. 4, the equivalent 

TC for the entire LC transistor can be derived as, 

𝐺𝑒𝑞 = 𝐾0
𝑒𝑥𝑝(Ψℎ̃)𝑒𝑥𝑝(Ψ�̃�)

𝐿𝑚𝑒𝑥𝑝(Ψℎ̃)+𝐿ℎ𝑒𝑥𝑝(Ψ�̃�)(1+𝑒𝑥𝑝(−ΔΨ))
 . (21) 

 

 
Figure 4: Equivalent energy profile of a long channel transistor. 

Ψℎ and Ψ𝑚 represent the potential minimum for the halo and 

middle regions respectively. ΔΨ is the effect of the drain bias 

on the halo transistor on the drain side. 

Applying traditional MOSFET theory the shift in 

threshold voltage due to applied drain bias on the entire 

transistor [12] can be shown to be 

𝛿𝑉𝑇 = 𝐴 (log (2) − 𝑙𝑜𝑔 (1 + e(−(𝐵𝑉𝐷+𝐶√𝑉𝐷)/𝜈𝑡))) (22) 

Where A is 𝑛𝑒𝑞𝜈𝑡 with 𝑛𝑒𝑞 representing effective subthreshold 

slope factor, while B and C are technology related parameters. 

Simulation result using Eqn. (22) matches experimental data 

very well as shown in Fig. (5) and Fig. (6) in [12].  

To gain physical insight, consider the limit where the 

barrier reduction ΔΨ to be >> 𝜈𝑡 and eqn (20) reduces to 

𝛿𝑉𝑇 = 𝑛𝑒𝑞𝜈𝑡log (2)   (23). 

This limit comes because, in the subthreshold region, the 

transport is determined by the maximum barrier height. When 

VD is zero, the current has to overcome two barriers. If each 

barrier represents a TC of G, the equivalent TC of the system is 

G/2. The application of a nonzero voltage at the drain terminal 

causes the drain barrier to decrease. As the TC has an 

exponential dependence on the surface potential, it becomes 

very high when the barrier gets lowered by a few t and the total 

TC then becomes G. In other words, because of the barrier 

lowering at the drain, the equivalent TC is increased by factor 

of two, which when modeled as VT results in Eqn. (23). 

Eqn (22) and (23) provide critical insight into the 

mechanism by which halo implants degrade output impedance 

and provide an upper bound to the observable DIBL 

degradation that can be measured. The understanding of 

phenomenon which have a physical upper bound is specifically 

useful in the development of corner models for circuit design 

models. While an empirical auxiliary LC DIBL model would 

serve the purpose, the precise bias dependence on the drain bias 

can be a challenge without a physical derivation.  

V. CONCLUSION 

The challenges in compact modeling are wide and varied. In 

Section II, we showed that while analytical solutions exist for 

some sections of the problem space, it is non-trivial to develop 

an exact analytical solution for the full problem. However, it is 

possible to use the insights gained to develop analytical 

approximations that are sufficient. In section III we showed that 

even if trivial textbook expressions exist, finding an expression 

that is applicable across all regions of operation can still be 

challenging. These expressions must also be carefully 

constructed to be fully valid with the core model for a robust 

compact model. Similar challenges exist in the formulation of 

nearly every auxiliary model. In Section IV we show the 

importance of physically deriving the functional form for long 

channel DIBL and the resulting physical insight gained by using 

this approach as opposed to empirically modeling the effect. 

The uniqueness of the challenge in compact modeling is the 

need to comprehensively understand nearly every aspect of the 

device behavior, be able to model it a computationally efficient 

manner while meeting all the mathematical requirements for 

robust circuit simulation. 
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