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Abstract—In this paper, we describe parallel domain de-
composition methods based on the restricted additive Schwarz
(RAS) method for a quantum drift-diffusion (QDD) model in
semiconductors. We have developed a hybrid MPI/OpenMP
parallelization method of the QDD system. For the inter-node
parallelization, an extension of the RAS method is newly de-
veloped for the QDD model. For the intra-node parallelization,
we combine a splitting-up operator method with the BiCGSTAB
(SPBiCGSTAB) procedure to realize parallelization of the in-
complete factorization. The parallel numerical results for three-
dimensional Si bulk n-MOSFET on a multi-core parallel com-
puter: NEC SX-ACE are demonstrated. The intra-node parallel
numerical results are further evaluated on a many-core parallel
computer: Cray XC40.

I. INTRODUCTION

Numerical simulations of semiconductor devices play an
important role in the analysis and design of semiconductor
devices. Parallel computers having a many-core architecture
are effective for the large scale device simulations and further
speed up of device simulations. To make the most of such
parallel computers, the development of parallel computing
methods suitable for many-core architectures is an important
issue. A number of authors have focused on parallelization
algorithms of domain decomposition methods [1]–[4] and
iterative solution methods of the linear system [5]–[7].

This paper presents a hybrid MPI/OpenMP parallelization
for a quantum drift-diffusion (QDD) model in semiconductors.
A restricted additive Schwarz method (RAS), which is one
of the parallel domain decomposition method (DDM), has
been studied for a single partial differential equation [1]. The
extension of the RAS method to a system of partial differential
equations is not unique. In this work, we have firstly extended
the RAS method for the QDD model. For parallelization of
incomplete factorization, we combine a splitting-up operator
method [8] with the BiCGSTAB procedures. The performance
results of three-dimensional bulk n-MOSFET on a multi-core
and many-core parallel computer are demonstrated.

II. QUANTUM DRIFT-DIFFUSION MODEL

A quantum hydrodynamic (QHD) model [9] is derived
from a Chapman–Enskog expansion of the Wigner–Boltzmann
equation adding a collision term. A QDD model, which is
also called the density-gradient model [10], is derived from a
diffusion approximation to the QHD model. The QDD model
is introduced as a quantum corrected version of the classical

DD model with O(h̄2) corrections to the stress tensor. This
model is viewed as one of the hierarchies of QHD models.
The stationary QDD model with the unknown variables (φ, n,
and un) is described as follows:

ϵ∆φ = q(n− p− C), (1)
1

q
divJn = 0, (2)

Jn = qµn(∇(n
kT

q
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ρnun = −ρn
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where φ, n, and p are the electrostatic potential, electron
density, and hole density, respectively. φn is the electron
quasi-Fermi-level. ϵ, q, C, and k are the the permittivity of
the semiconductor, the electronic charge, the ionized impurity
density, and the Boltzmann constant, respectively. T is the
carrier temperature. The mobility of the electrons are denoted
by µn. For electrons, the quantum potential γn is described
by
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h̄2
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where mn and h̄ are the electron effective mass and Planck
constant. From (5), the quantum potential equation is obtained
as

2bn∇2ρn − γnρn = 0, (6)

where bn = h̄2

12qmn
. The root-density ρn is written as ρn =

√
n =

√
niexp(un) by the variable un = q

kT (
(φ+γn−φn)

2 ),
where ni is the intrinsic carrier density. As shown in [8],(6)
is replaced by the equivalent form in (4). If the variable un

is uniformly bounded, the electron density is maintained to
be positive. This approach provides a numerical advantage
for developing a positivity-preserving iterative solution method
and high-accuracy conservative scheme [8].

III. A HYBRID MPI/OPENMP PARALLELIZATION
ALGORITHM

The stationary QDD model is parallelized on a parallel
computer having a many-core architecture. The discretiza-
tion of the QDD equations leads to the linear system of
equations Ax = b. In the single-processor calculation, an
iterative solution method for the QDD model is developed
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Fig. 1. RAS-SPBiCGSTAB method.

using the Gummel’s decoupled method. Each QDD equation is
solved by Krylov subspace methods such as a preconditioned
BiCGSTAB method.

A. Intra node parallelization

For the intra-node parallelization, we combine a splitting-
up operator method [5] with the BiCGSTAB (SPBiCGSTAB)
procedure to realize parallelization of the incomplete factor-
ization. The intra-node parallelization is performed by using
the OpenMP library. In the splitting-up operator method, the
incomplete factorization of coefficient matrices A arising from
the QDD model over a rectangular grid in three dimensions
is defined as follows:

A ≈ C = (D +Ax)D
−1(D +Ay)D

−1(D +Az), (7)

where D is a diagonal matrix. Ax, Ay , and Az are the
off-diagonal matrices corresponding to the partial differences
in the x-, y-, and z-directions, respectively. The incomplete
factorization of (7) is one of the splitting-up operator method,
which is called as the incomplete HV (IHV) decomposition
[6]. In [7], this method is also called as the TF method.
The parallel efficiency of the TF method is shown on a
vector supercomputer. The IHV decomposition is applicable
to the many-core supercomputer as a preconditioner algorithm
suitable to the intra-node parallelization with shared memory.
The solution of Cz = r is easily calculated by solving block
tridiagonal systems in the x-, y-, and z-directions:

(D +Ax) · zi = r, (8)
(D +Ay) · zj = D · zi, (9)
(D +Az) · zk = D · zj . (10)

Fig. 2. The Gummel map with the RAS-SPBiCGSTAB method.

The splitting-up operator method allows parallel computation
according to the natural ordering, which is realized by one-
dimensional processing in the x-, y- and z-directions.

B. Inter node parallelization

For the inter-node parallelization, we apply a parallel DDM
based on an overlapping Schwarz method [1]. The inter-node
parallelization is performed by using the Message Passing
Interface (MPI) library. We decompose the global solution
domain Ω into a set of N overlapping subdomains

{
Ωδ

i

}N

i=1
,

where δ is the number of overlaps. In this work, we have
extended the restricted additive Schwarz (RAS) method [1] to
the QDD model, which is described by a system of partial
differential equations. The extension of the RAS method to
a system of partial differential equations is not unique. In
this work, we apply the RAS method as a preconditioner
in the SPBiCGSTAB method shown in Fig. 1. The RAS
preconditioner is defined as follow:

M−1
RAS =

N∑
j=1

R̃T
j C

−1
j Rj , (11)

where Rj is the rectangular restriction matrices from Ω to Ωδ
i .

The subdomain matrices on Ωδ
i is defined by Cj = RjCRT

j .
R̃T

j is the prolongation operator from Ω0
i , corresponding to

a non-overlapping decomposition to Ω. The algorithm con-
tains four operations: 1. Preconditioning operations (PRE), 2.
Matrix-vector products (MV), 3. Inner dot products (DOT),
and 4. Vector addition and subtraction (DAXPY). In the
preconditioning operations M−1

RASpi−1, firstly we solve N
number of local linear equations using IHV decomposition

Cjqj,i−1 = Rjpi−1, j = 1, 2, · · · , N (12)

to calculate local vectors qj,i−1. Each local linear equation is
allocated to each node. This procedure can be solved simul-
taneously. Note that we can activate intra-node parallelization
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Fig. 3. Schematic of a simulated three-dimensional 30 nm Si bulk n-MOSFET.

(a) (b)

Fig. 4. One-dimensional decompositions for a three-dimensional bulk n-
MOSFET: (a) y-direction and (b) z-direction decomposition.

for solving local linear equations (12). Then using local vectors
qj,i−1 to calculate global vector p̂ by

p̂ =

N∑
j=1

R̃T
j qj,i−1. (13)

This procedure can be realized using MPI Isend and
MPI Irecv to exchange data in the overlapping region with
adjacent subdomains. The operations MV and DAXPY can
be parallelized relatively easily. The operations DOT can
also be parallelized using MPI Allreduce. This algorithm
can straightforwardly be applied to the preconditioned CG
method. Figure 2 shows a gummel map using this algorithm.
Each QDD equation is solved using the RAS-SPBiCGSTAB
method.

IV. SIMULATION RESULTS

A schematic of the simulated three-dimensional Si bulk
n-MOSFET with high-k/metal gates for the gate length of
LG = 30nm is shown in Fig. 3. The number of grids used for
simulations is 3,520,000 (88×200×200). The relative dielec-
tric permittivity of gate oxide considered here is 22, and the
value is known as HfO2. The equivalent oxide thickness (EOT)
is 0.8 nm. The doping concentrations of source/drain and
channel are set to NSD = 1.0×1020cm−3 and 1.0×1018cm−3

for the Si bulk n-MOSFET. Fig. 4 shows one-dimensional
decompositions in each direction. We decompose the global
domain so that each subdomain contains almost the same
number of grids. For the simulation, we used two grids as
overlaps. The parallel computation results are obtained on a
multi-core parallel computer: NEC SX-ACE. Each node of the
NEC SX-ACE has four vector cores having 256 GFLOPS and
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Fig. 5. The intra-node parallel speed up of the SPBiCGSTAB method. (a)
NEC SX-ACE. (b) Cray XC40.

a high memory bandwidth of 64GB/s per core. The intra-node
parallel results are further obtained on a many-core parallel
computer: Cray XC40. Each node of the Cray XC40 has
68 cores (Intel Xeon Phi KNL) having 3.05 TFLOPS. The
simulation results are carried out at the bias step Vg = 0.4V,
Vd = 0.0V → 0.2V , which means the bias step that the gate
voltage of Vg = 0.4V is already applied and the drain voltage
of Vd = 0.2V is going to apply.

In Fig. 5, the intra-node parallel speed up of the SP-
BiCGSTAB method on the NEC SX-ACE and Cray XC40
is shown. The intra-node parallel speed up is written as

SIntra(p) =
CPU time using 1 core

CPU time using p cores
. (14)

The parallel speed up in the intra-node parallelization strongly
depends on the parallelization of the incomplete factorization
by the splitting-up operator method. In the NEC SX-ACE, the
parallel speed up increases almost linearly. In the Cray XC-40,
we obtain a parallel speed up of 40 for 64 cores.

Figure 6 shows the inter-node parallel speed up with our
hybrid MPI/OpenMP parallelization on NEC SX-ACE. The
“hybrid” means an intra-node with 4 cores and inter-nodes
with various N, where N = Ny×Nz . The Ny and Nz are the
number of y- and z-direction decomposition. The inter-node
parallel speed up is written as

SInter(n) =
CPU time using 1 node (4 cores)

CPU time using n nodes (4× n cores)
.

(15)
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Fig. 6. The inter-node parallel speed up of the RAS-SPBiCGSTAB method
in the one- and two-dimensional decompositions. The parallel speed up of
4 (2×2), 16 (4×4), 64 (8×8) nodes are plotted in the two-dimensional
decomposition.

Fig. 6 shows the inter-node parallel speed up in the y-
and z-direction decompositions on the NEC SX-ACE. The
parallel speed up monotonically increases for both the y-
and z-direction decompositions. The parallel speed up of
the proposed algorithm depends on the number of RAS-
SPBiCGSTAB iterations. Table I summarizes the number of
RAS-SPBiCGSTAB iterations of the Poisson equation in the
first Gummel loop at the bias point Vg = 0.4V, Vd = 0.0V
→ 0.2V for the different numbers of decompositions. In the
y-direction decomposition, the number of RAS-SPBiCGSTAB
iterations increases as the number of decompositions increases
because of the nonhomogeneity of each subdomain. In the z-
direction decomposition, the number of RAS-SPBiCGSTAB
iterations is almost the same as that without the DDM.
This results in a smaller parallel speed up in the y-direction
decomposition compared to that of the z-direction decomposi-
tion. The inter-node parallel speed up in the two-dimensional
decomposition is further shown in Fig. 6. For 16 or more
decompositions, the parallel speed up of the two-dimensional
decomposition is larger than that of the one-dimensional de-
composition. This is because the number of grids of each sub-
domain in the two-dimensional decomposition is smaller than
that in the one-dimensional decomposition. In the case of 16
decompositions, since we use the two overlaps (δ = 2) for the
simulations, each subdomain has 299,200 (88×200×17) grids
in one-dimensional decomposition and 256,608 (88×54×54)
grids in two-dimensional (4×4) decomposition. This results in
the larger speed up of the two-dimensional decomposition. A
parallel speed up of 35.2 is obtained for 64 decompositions.

V. CONCLUSION

In this paper, we have developed parallel domain decompo-
sition methods for a quantum drift-diffusion model in semicon-
ductors using a hybrid MPI/OpenMP parallelization method.
For the intra-node parallelization, the parallelization of in-
complete factorization has been realized by the splitting-up
operator method according to the natural ordering. Significant
improvements in parallel performance can be achieved by the
parallelization of the incomplete factorization by the splitting-
up operator method. For the inter-node parallelization, we

TABLE I
THE NUMBER OF RAS-SPBICGSTAB ITERATIONS.

RAS-SPBiCGSTAB iter.
Number of dec. y-direction z-direction
Without DDM 184

4 185 192
10 200 192
20 244 189

have extended the restricted additive Schwarz method to
Krylov subspace methods as a preconditioner. The parallel
speed up of the proposed algorithm depends on the num-
ber of RAS-SPBiCGSTAB iterations. For a one-dimensional
decomposition, the number of RAS-SPBiCGSTAB iterations
increases as the number of decompositions increases in y-
direction decomposition, whereas that is almost the same
in the z-direction decomposition. This results in a smaller
parallel speed up in the y-direction decomposition compared to
that of the z-direction decomposition. For a two-dimensional
decomposition, a parallel speed up of 35.2 for 64 nodes is
obtained.
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