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Abstract—The physical issues of device modeling associated
with randomly doped impurities in nanoscale devices are dis-
cussed. We investigate the length-scale associated with the dis-
crete impurities in the Drift-Diffusion simulation scheme and
point out the importance of the self-consistency of the length-
scales between the Poisson and transport equations. The physics
behind the discrete impurity models is then discussed. The
impurity-limited resistance of nanowires under various spatial
configurations of impurities is also studied under the framework
of the Lippmann-Schwinger theory. We show that there are two
different and independent mechanisms leading to the variability
in impurity-limited resistances; coherent and incoherent random-
ization processes. The physical origin of ‘“self-averaging” under
nanowire structures is then clarified.

I. INTRODUCTION

The complexity of the device structures as well as the
shrinkage of the entire device dimension is being progressed
to gain the benefit from the traditional scaling of nanoscale
Si devices. As a result, there are still many physical issues in
modeling ultra-scaled devices. Among others, the variability
of device characteristics is now of crucial importance in
integrating more than billions of nano-scale devices on a
single chip. In the past 20 years or so, intensive studies on
the variability have been carried out. Namely, the variability
associated with randomly doped impurities, interface or line
edge roughness, gate length deviation, grain boundaries of the
gate materials, etc have been investigated [1].

In the present plenary talk, we would like to give a brief
(and somewhat biased) overview of the physical issues of
device modeling associated with randomly doped impurities
in nanoscale devices.

We first discuss the length-scale associated with discrete im-
purities under the Drift-Diffusion (DD) simulation scheme [2].
Unfortunately, this issue has received very little attention so
far. We point out the importance of the self-consistency of
the length-scales between the Poisson and transport (cur-
rent continuity) equations. Then, we discuss randomly doped
impurities under nanostructures form the viewpoint of the
impurity-limited resistance [3]. Namely, we discuss how the
self-average in the impurity-limited resistance shows up under
nanostructures. Notice that this is not simply a matter of statis-
tics, but rather of phase interference among the impurities.

© 2017 The Japan Society of Applied Physics

II. LENGTH-SCALE AND RANDOM DOPANT
FLUCTUATIONS

The physical origin of random dopant fluctuation (RDF) has
been well known from the early stage of the investigations [2];
it is the modulation of the (long-range) electrostatic potential
associated with the discreteness of doped impurities that
leads to the fluctuations of the surface potential at the gate-
oxide/substrate interface. In order to investigate the RDFs
quantitatively, localized impurities, instead of continuous jelly
impurities, are introduced in DD simulations. We would like to
stress, however, that this jump from the traditional jelly model
to a discrete model is not trivial at all. A naive introduction of a
point charge into the Poisson equation to represent a localized
impurity leads to a spiky potential, which causes an artificial
carrier trap in the device substrate. In addition, this short-range
potential is double-counted through the mobility model in the
transport equations unless the conventional mobility model
is abandoned. This implies that, depending on the transport
equations employed in device simulations, some length-scale
lies hidden behind the simulations.

A. Length-Scale in Poisson’s Equation

The Poisson equation is usually considered to hold true at
any length-scale. This is true in general. However, we should
notice that the length-scale comes into play even in the Poisson
equation by the way how the charge densities on the right-
hand-side of Eq. (1) are described,

v2¢=—§{p—n+N;—Na—}. (1)

Here, ¢ is the electrostatic potential, e the magnitude of
elementary charge, ¢, the dielectric constant of the substrate, p
the hole density, n the electron density, N, [;r the ionized donor
density, and N, the ionized acceptor density.

As a concrete example, when impurities are represented by
point charges, N, j and N, are expressed in terms of the Dirac
delta-function. Then, there is no lower limit of the length-scale
to describe the potential modulation. In other words, the po-
tential modulation with any wavelength is included in Eq. (1).
On the other hand, if the impurity density is represented by
a scalar smooth function such as jelly impurity, the resolution
of the potential modulation is limited by the mean-separation
among the impurities. Hence, the potential modulation with



the wavelength shorter than the mean-separation is implicitly
ignored from the simulations [4].

Since the carrier densities are determined by the transport
equation, the length-scale imposed on the electrostatic po-
tential is dependent of which transport equation is coupled
with the Poisson equation. In other words, depending on the
simulation schemes employed, the length-scale to be imposed
on the Poisson equation becomes distinct.

B. Length-Scale in Drift-Diffusion Scheme

The DD equations consist of the current continuity equa-
tions for electrons and holes. They are derived from the
first moment of the Boltzmann transport equation (BTE). The
most significant approximation involved in their derivations
is the local quasi-equilibrium approximation. This implies
that the mean scattering time of inelastic scattering is so
small that the system relaxes immediately to quasi-equilibrium
with two independent quasi-Fermi potentials for electrons and
holes. Therefore, the physical modulation with the wavelength
shorter than the mean-free-path cannot be described, in prin-
ciple, with the DD simulations.

Assuming that the mean scattering time is small enough, the
localized impurities are screened by mobile carriers that leads
to a smoothly averaged screened potential. The potential left
behind the screening is the short-ranged scattering potential of
impurity and ascribed to the reduction of mobility as impurity-
limited resistance. This fact reflects in the impurity density
dependence of the conventional mobility model incorporated
into the DD simulations. Therefore, the short-range part of
the Coulomb potential of impurity is already included in the
conventional DD scheme. On the other hand, the long-range
part of the impurity potential is compensated by the Coulomb
potential of mobile carriers through screening and this physics
is taken into account by solving the Poisson equation. Since
the screening results from the long-range part of the Coulomb
potential, it is the long-range-part of the impurity potential that
should be included in the Poisson equation.

To summarize, it is mandatory to separate the Coulomb
potential of ionized impurities into the short- and long-range
parts. The separation is closely related to the screening process
by the mobile carriers. Since the screening is dependent of
the average carrier density in the device substrate, the cut-
off parameter to extract the long-range part of the Coulomb
potential becomes dependent of the carrier density in the
device substrate. In other words, the cut-off parameter could
be dependent of the gate voltage.

C. Discrete Impurity Models for Drift-Diffusion Simulation

In order to incorporate the long-range part of the Coulomb
potential of impurities into the Poisson equation, we have
proposed to cut off the short-range part of the potential by
employing the finite-size charge distribution for each impu-
rity [2]: The Fourier components beyond some critical value
k. of the charge density are discarded because they are already
included as scattering potential in the mobility model. Then,

the charge distribution due to a single impurity located at the
origin is spread in real space and expressed by

plong (r) = k. sin (ker) — (ker) cos (ker)
s 272 (ker)?

where k. is roughly given by the inverse of the screening
length, k. = 1/As.. The oscillatory behavior results from

the sharp cut of the Fourier components. That is, the Fourier
transform of pl°™9 (r) is simply given by

plond (k) = ef (k. — k), (3)
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where 0(x) is the Heaviside step function. The long-range part
of the Coulomb potential is then given by

long ke 2Si(ker)
05 (r) = e47r5 m ker
in MKS units. Here, Si(z) is the sine integral. Since Si (c0) =
/2, ¢L°™9 (r) approaches the ordinary bare Coulomb potential
as k.r — oo.

Another way to cut-off the short-range part of the Coulomb
potential is to employ the Yukawa potential directly for the
screened (short-range) Coulomb potential. The long-range part
of the potential is then given by
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As k. — 00, the potential ¢12"9 (r), of course, approaches the

bare Coulomb potential. The corresponding charge distribution
for a single impurity located at the origin is given by
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and the Fourier transform of p!™ (r) becomes
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Figure 1 shows the electrostatic potentials expressed by
Egs. (4) and (5). Although the potential profiles around the
origin are different in the two models due to the different treat-
ment of how the short-range components are discarded, both
potentials coincide well at large distance and asymptotically
approaches the bare Coulomb potential. The corresponding
Fourier transforms of the charge density given by Egs. (3)
and (7) are also shown in the inset to Fig. 1. The components
above k. are sharply discarded in the first model, whereas the
large components are gradually discarded in the second model.
Notice that the zero-component of the Fourier transform of the
charge density is included in both models and, thus, the total
charge is conserved in both. The former dopant model is now
widely employed in RDF simulations and simulation results
could be found in the literature.

Nevertheless, we must admit that there are several problems
in the above models. The above expressions of the finite-
size impurity are valid only if the scattering potential is
approximated with the Yukawa-like screened potential. This is
correct as far as the device substrate is so large that we may
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Fig. 1. Electrostatic potentials of a single impurity located at the origin
obtained from the two different impurity models: Eqs. (4) (model A) and
(5) (model B). The inset shows the corresponding Fourier transforms of the
charge densities given by Eqgs. (3) (model A) and (7) (model B).

ignore the effects associated with the boundaries such as the
gate-oxide interface. In other words, the charge densities given
by Egs. (2) and (6) could be used only if impurities are doped
in bulk structures. In addition, each impurity is treated as an
independent scattering center in the mobility model. Hence,
the scattering probability is proportional to the impurity den-
sity and the phase coherence among the impurities is ignored.
If the correlation among multiple impurities is significant, the
scattering strength is proportional to the multiple powers of
impurity density, which leads to the Anderson localization at
low temperature. In this sense, we might need to refine the
conventional mobility model.

Those problems become serious as the device structure
shrinks. That is, the modulation of the long-range potential
could be strongly affected by the boundaries and each scatter-
ing center might be coherently coupled. The former problem
is now under investigation and the latter is the issue to be
discussed in the next section.

III. PHASE INTERFERENCE AND SELF-AVERAGING

The variability observed in mobility and/or resistance of
nanowires has been studied via large-scale numerical sim-
ulations [5-6]. The phase interference among the impurities
distributed randomly in the substrate is of crucial importance
in understanding the physics behind such variability. In fact,
the phase interference plays a dominant role in self-averaging
the transport properties such as resistances in long channel
devices [7]. Many different configurations of impurities in
the substrate allows us to use the space-average impurity
scattering rates in calculating the mobility etc, although the
precise impurity configuration is different for each device.

A. Theoretical Backgrounbd

We consider a cylindrical nanowire with the radius of 4 = 2
nm and the impurity density in the substrate is assumed to be
uniform (n;,, = 2 x 10'? cm™3). The channel length L of
the wire changes in accordance with the number of impurities
doped in the channel region. In addition, the extreme quantum
limit, in which only the lowest subband is involved in electron

transport, is assumed in which the effects of phase interference
is most significant.

The conductance G of nanowires is calculated from the
Landauer formula under the linear response regime. It should
be noted, however, that the total resistance R (= 1/G) is
comprised of two contributions; the contact resistance and the
channel resistance [3]. The former results from the difference
in the number of modes between the lead and the reservoirs,
whereas the latter is due to both the short-range potential
modulations by scatterers and the long-range potential mod-
ulation. This long-range potential modulation also consists
of the long-range part of the Coulomb potential of charged
particles (impurities and carriers) and the electrostatic potential
induced by the applied gate voltage. In general, this long-range
potential modulation is irrelevant to the channel resistance
and simply ascribed to the carrier density modulation in the
channel. As the channel length shrinks, direct tunneling from
the source to the channel and/or the drain regions comes into
play and finite resistance shows up.

In order to extract the impurity-limited resistance from
the total resistance, we intentionally eliminate phonon scat-
tering and consider only impurity scattering. Furthermore,
the resistance caused by the long-range potential modulation
mentioned above is ignored by assuming that the channel
potential is flat along the wire axis. As a consequence, the
impurity-limited resistance is obtained simply by subtracting
the contact (quantum) resistance from the total resistance,
Rs = Riot — Ry with Ry = 7rh/62. The transmission and
the reflection coefficients are calculated from the asymptotic
form of the scattered wave function by solving the Lippmann-
Schwinger (LS) equation. By assuming the short-range o-
function potential for localized impurities, the exact transmis-
sion and reflection coefficients could be derived.

B. Variability and Phase Interference

The calculation results show that the impurity-limited re-
sistance R, scatters over a few orders of magnitudes. Such
large fluctuations result from two different physical origins:
The fluctuations in R in the transverse direction (impurities
are fixed at the same position on the wire axis) are attributed
to the variations in the subband wavefunctions, whereas the
fluctuations along the longitudinal (wire axis) direction are due
to the phase interference of electrons among the impurities.
Therefore, the former has nothing to do with the phase
correlation among multiple impurities; each impurity could be
regarded as independent. Since the central-limit theorem could
be applied in this case, the fluctuations with respect to the
transverse direction diminish as the channel length becomes
longer. On the other hand, the variations in R along the axis
direction do not generally vanish even for long channel wires,
as noted by Kohn and Luttinger [7].

In order to demonstrate this point, we eliminate the fluc-
tuations associated with the subband wavefunctions; we carry
out similar calculations by placing several impurities on the
wire axis at temperature 7' = 300 K. The calculation results
for the cases of three or four (acceptor or donor) impurities
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Fig. 2. Impurity-limited resistances of three (top) and four (bottom) acceptor
or donor impurities at 7" = 300 K as a function of the maximum separation of
impurities Aynq. All impurities are located on the wire axis. The horizontal
dotted lines show the uncorrelated values, 3Rgingie and 4R ingie, With
Rgingle being the single-impurity resistance located on the wire axis.

are shown in Fig. 2 as a function of the maximum separa-
tion among the impurities A, ... The uncorrelated (classical)
values of the resistatace are also indicated with the horizontal
dotted lines. A large oscillatory behavior in R is observed
in the first few nm, which results from the constructive or
dstructive phase interference among the impurities. On the
other hand, R nearly stays constant as A,,,, becomes large.
This is somewhat surprising because no averaging over the
configuration of impurities nor energy dissipating scattering
which randomizes electron’s phase is included in the above
analyses. In other word, the phase randomization is taking
place even under the fully coherent circumstances under each
specific impurity configuration.

C. Physical Origin of Self-Averaging

We find that the physical origin of this phase randomization
along the wire axis direction is closely related to the broadness
of the energy spectrum of in-coming electrons from the
reservoirs (source and drain). That is, R, is averaged by in-
coming electrons with many different kinetic energies when
the spectrum is broad (temperature of the reservoirs is high).
This phase randomization is, therefore, partially responsible to
the self-averaging. If temperature is low enough such that the
energy spectrum of the in-coming electrons is limited to be a
very narrow range around the Fermi energy of the reservoirs,
the phase coherence lasts longer distances and R, deviates
from the uncorrelated value even at large A, 4.

However, as is clear from Fig. 2, the values of R, at large
A,,qz scatter to some extent around the uncorrelated values.
This results from the fact that the transmission probability
T4 is very close to zero at such large impurity separation
(Ajaz > 10 nm) and electrons hardly go through the channel

region. As a result, R is greatly affected by a tiny fluctuation
in Ty and scatter around the uncorrelated value, 3Rg;ng1e OF
4Rgingle. We should notice, however, that at room tempera-
ture, phonon scattering is always inevitable even in nanoscale
channels [8]. Since its mean-free-path is around 10 nm, the
phase coherence is almost always destroyed at such large
impurity separation. Then, the ensemble-average over various
impurity configurations again comes into play in long channel
nanowires. In other words, the phase coherence is destroyed
at large A4, and the variations even along the axis direction
vanish due to incoherent averaging over various impurity
configurations, in addition to the phase randomization.

IV. CONCLUSIONS

The length-scale associated with RDFs in the DD simula-
tions has been discussed. We have pointed out the importance
of the self-consistency in length-scale between the Poisson and
transport equations. We have also investigated the variability
in the impurity-limited resistances due to localized impurities
in nanowires. The self-averaging is mainly ascribed to the
broadness of the energy spectrum of in-coming electrons from
the reservoirs, in addition to phase breaking scattering.
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