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Abstract—We model the source/drain series resistance and
the electrostatic doping effects associated to the source and
drain metals in graphene FETs using a Monte Carlo transport
simulator. We compare the new model to simulations assuming
chemical doping in the source/drain regions. A procedure to
include the series resistance as part of the self–consistent Monte
Carlo loop is proposed and verified against the widely employed
method based on look–up tables.

Index Terms—Graphene FET (GFET), Monte Carlo, electro-
static doping, series resistances.

I. INTRODUCTION

Graphene FETs (GFET) have a great potential as high cutoff
frequency devices [1]. However, far from ideal metal/graphene
contacts and series resistances reduce the extrinsic transcon-
ductance and limit the GFET performance [1]. Since it is
difficult to chemically dope graphene [2], metals are used to
induce an electrostatic doping and to control the polarity of the
source/drain (S/D) regions [3], [4]. Clearly, it is fundamental
to account for these effects in GFET simulation tools in order
to reliably assess the RF performance of GFETs. The Monte
Carlo (MC) method has been used in [5], [6] to describe quasi–
ballistic transport in short channel GFETs. Here, we extend
the MC transport model of [6] to include the S/D contacts. In
addition, the contribution of the series resistances is directly
accounted for by dynamically adjusting the terminal voltages
in the self–consistent loop for the calculation of device electro-
statics as opposed to the time consuming generation of a look–
up table based post-processing of the MC transport simulations
[6], [7].

II. MODELING ELECTROSTATIC DOPING

The MC simulator for GFET devices developed in [6]
couples, in a self–consistent loop, the Boltzamnn transport
equation for electrons and holes in the graphene sheet to
the non–linear Poisson equation. A gapless energy dispersion
relationship in the graphene is assumed and scattering with
acoustic and optical phonons in the graphene as well as with
remote phonons in the top–oxide and back–oxide (Fig. 1)
are considered. A local model for the band-to-band tunneling
(BBT) in graphene (generation–recombination based on the
local electric field and occupation function) is also included.

Fig. 1 sketches GFETs with chemical doping (CD, a) and
electrostatic doping (ED, b) in the S/D regions. The dashed
box is the domain of the MC transport simulation. For the
case of chemical doping, S/D regions are part of the domain
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Fig. 1. Sketch of GFETs with chemical doping (a) and electrostatic doping
(b) induced by the S/D metals. VTG, VBG, VS and VD are the top–gate,
back–gate, source and drain biases, respectively.
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Fig. 2. Band diagram at the source contact along the section AA’ of Fig. 1,
neglecting the presence of the back–gate (on the left) and the analogous band
diagram at the drain (on the right).

and Neumann boundary conditions are used in the Poisson
equation [6].

For the case of electrostatic doping, instead, S/D regions
are external, but coupled to the MC domain as follows. First,
the electrostatics of the vertical metal/grafene stack is solved
(see section AA′ in Fig. 1(b)), assuming the presence of an
insulating layer (IL, by default 0.2 nm of vacuum, consistently
with [8], [9]) between metal and graphene, acting as a tunnel
barrier [10].

Fig. 2 shows the band diagram of the stack at the source978-1-5090-0818-6/16/$31.00 c©2016 IEEE
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φM − QGR

CIL
= χGR − ED (1)

QGR = q

[∫ 0

−∞
DoS(E) ·

[
1 − f(E,ED)

]
dE −

∫ ∞
0

DoS(E) · f(E,ED)dE

]
(2)
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Fig. 3. Energy displacement ED vs. the work–function of the S/D metal
contact considering (dashed line) or neglecting (solid line) the presence of 20
nm of SiO2 as back–oxide. The source to back–gate voltage is null.
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Fig. 4. Average electron density in the channel vs. VTG for GFETs with
chemical (circles) and electrostatic doping (triangles).

contact (on the left) and at the drain end of the channel (on
the right). To simplify the description, Fig. 2 omits the back–
gate insulator and metal, although the simulator implements
the entire metal/IL/graphene/insulator/metal structure as in
Fig. 1(b). Equations (1) and (2) describe the electrostatics
of the stack at the source and drain. DoS(E) is the graphene
density of states, f(E,ED) is the Fermi-Dirac distribution, CIL

is the IL capacitance. In the S/D regions, the solution of
Eqs. (1) and (2) provides the charge QGR and the displacement
(ES

D=ED
D=ED) of the Fermi levels (ES

F , ED
F ) with respect

to the graphene Dirac Point, that is then used as Dirichlet
boundary condition in the Poisson equation at the left and right
sides of the dashed box in Fig. 1(b). If we momentarily neglect
the effect of the tunneling resistance (we will discuss its role in
Sec. III), the displacement between ES

F and ED
F corresponds

to the extrinsic VDS voltage directly applied between the S/D
metal contacts (see Fig. 2).
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Fig. 5. IDS vs. VDS for GFETs with chemical (dashed) and electrostatic
(solid) doping. Results including BBT according to the model in [6] are
reported at VTG=0.3 V for the case with CD. BBT model for the ED is
under development.

Fig. 3 shows the energy displacement ED vs. the work–
function φM of the metal contact for a few values of the
IL thickness tIL in the metal/IL/graphene stack (solid lines)
and in the metal/IL/graphene/insulator/metal structure (dashed
lines). As expected, ED is null when the metal work–function
equals the graphene affinity (χGR=4.6 eV) and, the thinner
the IL is, the larger the charge induced in the graphene is,
since CIL increases. We see that the presence of the back–
oxide (here 20 nm of SiO2, consistently with what simulated
in the following of this work) does not change significantly
the amount of the induced charge in the graphene and finally,
the value of ED is almost the same of the previous structure
(compare solid and dashed lines).

Concerning the transport simulations of complete GFETs,
in both CD and ED cases, carriers are injected at the S/D
ends of the MC simulation domain according to a Fermi–
Dirac distribution with ES

F =0 and ED
F =−qVDS , respectively,

similarly to what was done for MOSFETs in [11]. For the
sake of a fair comparison between the devices in Fig. 1,
we set a work–function of the S/D metal (φM=2.061 eV)
that induces in the ED case a QGR/q=5·1013 cm−2, that is,
exactly the same value of the doping in the CD case. Unless
otherwise stated, we simulated report calculations on n-GFETs
with channel length LCH=30 nm, 2 nm underlap, 2 nm SiO2

top–oxide (tTG) and 20 nm SiO2 back–oxide (tBG).
Fig. 4 compares the average electron density under the top–

gate vs. VTG in the case of CD and ED for VDS=0 V. The
mutual agreement between curves is good, as expected, since
the electrostatics is controlled by the gate, while the S/D
regions only set the electron Fermi level. This results proves
the correct implementation of the model.
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Fig. 6. Electron velocity (a), density (b) and potential energy (c) along the
channel for GFETs with chemical (black–dashed) and electrostatic (solid–red)
doping for VTG=0.3 V and VDS=0.05 V. Device parameters: LCH=30 nm,
2 nm underlap, tTG=2 nm (SiO2) and tBG=20 nm (SiO2).
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Fig. 7. The same as in Fig. 6 with VDS=0.5 V.

Fig. 5 compares the output characteristics for GFETs with
CD or ED in the source and drain. The motivation for the
observed differences are investigated with the help of Figs. 6
and 7 showing the electron velocity (a), concentration (b)
as well as the potential energy (c) profiles at VDS=0.05 V
and VDS=0.5 V, respectively. At high VDS the agreement
between these profiles in the CD and ED cases is worse than
at low VDS , explaining the small differences in the resulting
output characteristics of Fig. 5. For the CD case, simulations
including the contribution of BBT are also reported in Fig. 5,
showing the typical non–saturated behavior [6]. The BBT
model for the ED case is under development, since the
determination of the BBT rate requires a careful estimation
of the carrier fluxes in the high electric field regions [6] that
feature significant differences in the ED and CD cases.

III. MODELING SERIES RESISTANCES

So far we have included the effect of the metal contact
on the electrostatics. The non–negligible tunneling resistance
of the IL translates into a significant series resistance [12],
[13]. In order to have a comprehensive GFET simulation tool,
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Fig. 8. IDS evolution during the MC simulation of a GFET with series
resistance. Without damping procedure, the simulation does not converge
(solid line). The damping algorithm solves the problem (dashed line). The
dash–dotted line is the current value used in the algorithm to calculate the
Fermi-level drop across the series resistances at each iteration.
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Fig. 9. Potential energy profile along the GFET (CD) without (dashed black)
and with (solid red) the series resitances. The Fermi levels in the S/D regions
(ES

F , ED
F ) are reported (dashed black: no R, solid red: with R). The shift

of the Fermi levels in the source and in the drain regions reduces the intrisc
Vi
DS .

we include directly in the self–consistent MC loop the series
resistances (R) at each side, inclusive of contributions from
tunneling resistance, graphene sheet resistance in S/D, etc.
At each iteration, the electrons’ Fermi levels of the source
and drain are shifted by qRIDS . The instantaneous current
(IDS , estimated as an average along the channel of the product
between the carrier concentration and the average carrier
velocity) requires a proper estimation. In fact, Fig. 8 shows
that, without introducing some damping, the simulation does
not converge (solid line). To overcome this difficulty, we limit
the variations of the RIDS value to less than 1% between
two MC iterations. The dash–dotted line in Fig. 8 shows the
current value used to calculate RIDS , while the dashed line is
the IDS obtained at the given iteration, that converges thanks
to the proposed damping scheme.

Fig. 9 shows the potential energy profile for the CD GFET
w/o and with R=100 Ωµm. For R>0, ES

F is reduced, while
ED

F is increased, thus reducing the intrinsic voltage drop
across the channel (V i

DS=VDS−2RIDS). In addition, the
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Fig. 10. Potential energy profile along the GFET (CD). Solid red: simulation
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series resistance. ∆S=∆Ch demonstrates that it is present only a pure shift
between the two potential energy profiles, since ES

F and ED
F are shifted of

qRIDS in the two simulations.

series resistances reduce the intrinsic top-gate bias (Vi
TG), as

shown in Fig. 10, where the dashed line is the simulation ob-
tained for V i

TG=VTG−RIDS , V i
DS and R=0. The difference

between the dashed line and the solid line (again obtained
with R=100 Ωµm) is almost constant over x and it is exactly
∆S=∆Ch=qRIDS . It is interesting to note that ∆TOP in
Fig. 9 is smaller than ∆Ch=∆S in Fig. 10; this indicates
that R not only reduces V i

DS , but also increases the effective
potential energy barrier (∆S − ∆TOP ) at the injection point,
as it should be.

Fig. 11 compares the current with and w/o series resistance
to the case where R is introduced as a lumped element by
transforming the look–up table of the IDS in the (VDS ,VTG)
plane through interpolation [7]. The agreement between the
method of [7] and our implementation where R is introduced
in the MC loop confirms the correctness of our technique,
that has the advantage of saving the simulation time needed
to construct the look–up table (at least a factor of two in time
if a coarse table is used).

IV. CONCLUSION

Efficient implementation of S/D resistance in a MC trans-
port model yields a useful tool to simulate realistic I–V
curves of GFETs in reduced times. Physics based models
of chemically or electrostatically doped contacts (the main
contributor to the series resistance) show that, for the same
S/D sheet charge, GFETs with CD or ED drive essentially
the same IDS current. Nevertheless, because of technological
limitations, such as the difficulty in doping the graphene and
the availability of suitable metal contacts, the two solutions
may be not equivalent in actual realizations.
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