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Abstract—As the dimensions of electronic devices, especially
transistors, are getting smaller and smaller, novel modeling
approaches must be developed to reveal the physics and predict
the performance of not-yet-fabricated ultra-scaled components.
In this paper the basic requirements to simulate nanoscale devices
are first reviewed before introducing a hierarchical quantum
transport approach going from empirical to ab-initio models. It is
illustrated with three examples, a Si nanowire transistor treated
within nearest-neighbor tight-binding (TB), a 2-D logic switch
based on transition metal dichalcogenides and investigated with
an hybrid scheme combining the advantages of TB and density-
functional theory, and finally a silver nano-filament explored at
the first-principles level. The importance of dissipative effects
such as electron-phonon scattering is discussed in all applications.

I. INTRODUCTION

At the heart of laptops, tablets, or cell phones sit inte-
grated circuits, lithium ion batteries, and memory cells that
ensure the proper functionality of these modern electronic
devices. By further diving into these hardware components,
one may find integrated circuits relying on nanoscale logic
switches, in most cases FinFETs, cathodes and anodes with
high power and energy densities due to the presence of porous
nano-particles, or ultra-short metal-insulator-metal junctions
enabling a non-volatile storage of digital information. Besides
reduced dimensions the mentioned nanostructures share other
peculiar features: their active region is usually made of a
countable number of atoms and their behavior is strongly
influenced by quantum mechanical effects. As a consequence
and contrary to the recent past, standard recipes, intuition, and
extrapolation from previous generations might not be sufficient
anymore to design novel nanoelectronic devices with enhanced
performance and higher complexity.

The experimental work can be greatly enhanced by adding
a modeling activity to support the initial design process and
shed light on the mechanisms that determine the properties of
fabricated samples. If a suitable technology computer aided
design tool (TCAD) is available, less trial-and-error iterations
are needed before a successful prototype is demonstrated.
This is particularly true at the nanoscale, where the costs
of production are consequent and the manufacturing cycles
relatively long. To be useful to a nano-device engineer, a
TCAD tool should provide measurable data that can be directly
compared to experiments and give access to internal quantities
whose knowledge is essential to understand the behavior of the
considered systems. This includes for example insights into the

underlying atomic structure, the magnitude of the electron/hole
currents induced by the application of external voltages, the
carrier trajectories inside the active region, or the distribution
of the lattice temperature. The right physical models should
be implemented in the chosen TCAD framework to make such
detailed analyses possible.

Since (semi-)classical theories such as drift-diffusion or the
Boltzmann Transport Equation fails at incorporating the atom-
istic granularity of simulation domains as well as quantum
mechanical effects, they should be replaced by more advanced
techniques that offer the desired level of accuracy. At the
nanometer scale a direct solution of the Schrödinger equation
imposes itself to account for atomistic quantum transport
phenomena. This can be achieved with the well-established
Non-equilibrium Green’s Function (NEGF) formalism, which
will be briefly summarized here in Section II and illustrated
with three different examples in Section III.

II. SIMULATION APPROACH

To determine the transport properties of nanoscale devices,
open boundary conditions (OBCs) should be introduced into
the Schrödinger equation in order to enable the injection of
fermions and bosons into the simulated region. If this is done
in the framework of NEGF [1] the generic equations for
fermions are the following

(

𝐸 −𝐻(𝑘)− Σ𝑅(𝑘,𝐸)
) ⋅𝐺𝑅(𝑘,𝐸) = 𝐼 (1)

𝐺≷(𝑘,𝐸) = 𝐺𝑅(𝑘,𝐸) ⋅ Σ≷(𝑘,𝐸) ⋅𝐺𝐴(𝑘,𝐸), (2)

Σ≷,𝑅(𝐸, 𝑘) = Σ≷,𝑅𝐵(𝐸, 𝑘) + Σ≷,𝑅𝑆(𝐸, 𝑘). (3)

Similar equations can be derived for phonons [2] and photons.
In Eqs. (1) and (2), the unknowns are the retarded/advanced
𝐺𝑅/𝐴(𝑘,𝐸) and lesser/greater 𝐺≷(𝑘,𝐸) Green’s functions
at energy 𝐸 and momentum 𝑘. They are full matrices of
size 𝑁𝐴 × 𝑁𝐵 where 𝑁𝐴 is the number of discretization
points in the simulation domain and 𝑁𝐵 the number of basis
components describing each of them. The momentum (𝑘)
dependence arises from the modeling of the directions that
are assumed periodic. The diagonal matrix 𝐸 contains the
electron/hole energy, the usually block tri-diagonal matrix
𝐻(𝑘) is the device Hamiltonian, while the open boundary
conditions are cast into the self-energy matrices Σ𝑅,≷𝐵(𝑘,𝐸)
and the scattering mechanisms into Σ𝑅,≷𝑆(𝑘,𝐸). The key
ingredients in Eqs. (1) and (2) are the Hamiltonian 𝐻(𝑘) that
can be expressed in various atomistic basis sets, as will be
discussed in Section III, and the choice of the interactions
that are integrated into Σ≷,𝑅𝑆(𝑘,𝐸).978-1-5090-0818-6/16/$31.00 c⃝ 2016 IEEE
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Fig. 1. (a) Si bulk bandstructure as computed with the nearest-neighbor tight-binding parameters of Ref. [9]. (b) Electron and hole mobility of bulk Si. The
square and triangle refer to calculations performed with the “dR/dL” method [10] in the presence of electron-phonon scattering, the stars to experimental data.
(c) Lattice thermal conductivity of bulk Si as obtained from phonon quantum transport simulations including anharmonic phonon phonon scattering (red line
with symbols) and from experiments (blue line) [11].

A. Ballistic Transport

The NEGF formalism is best-suited for transport situations
where scattering should be accounted for. In the ballistic limit,
Eq. (1) can be reformulated into a Wave Function problem
known as Quantum Transmitting Boundary Method (QTBM)
that produces exactly the same results as NEGF, but faster
since it takes the form of a sparse linear system of equations
“Ax=b” [3], [4]

(

𝐸 −𝐻(𝑘)− Σ𝑅𝐵(𝐸, 𝑘)
)

︸ ︷︷ ︸

𝐴

⋅𝐶(𝐸, 𝑘)
︸ ︷︷ ︸

𝑥

= 𝐼𝑛𝑗(𝐸, 𝑘)
︸ ︷︷ ︸

𝑏

. (4)

In Eq. (4) the injection vector 𝐼𝑛𝑗(𝐸, 𝑘) is also part of
the OBCs and the unknowns are the expansion coefficients
𝐶(𝐸, 𝑘). Direct sparse linear solvers, sequential or parallel,
can be utilized to handle the “Ax=b” system in Eq. (4).

B. Dissipative Transport: Electron-Phonon Scattering

As soon as scattering is turned on, the NEGF formalism
should be used because it lends itself naturally to this kind of
physical problems. In case of electron-phonon scattering, the
lesser scattering self-energy can be formulated as

Σ<𝑆(𝑘,𝐸) ∝
∑

𝜔

∫

𝑑𝑞

2𝜋
𝑉 (𝜔, 𝑞)

∇𝐻
(

𝑛𝜔𝐺
<(𝑘 − 𝑞, 𝐸 + ℏ𝜔)+

(𝑛𝜔 + 1)𝐺<(𝑘 − 𝑞, 𝐸 − ℏ𝜔)
)∇𝐻 (5)

The expression for Σ>𝑆(𝑘,𝐸) and Σ𝑅𝑆(𝑘,𝐸) can be found
in Ref. [5]. The phonon frequencies 𝜔 and modes 𝜇 enter this
equation, either directly or through the form factor 𝑉 (𝜔, 𝑞)
that is a function of both of them and through the phonon
distribution function 𝑛𝜔 (Bose-Einstein). Here, it is assumed
that the phonon population remains in equilibrium with its
environment, but it can be driven out-of-equilibrium by solving
the corresponding phonon Green’s functions and phonon-
electron scattering self-energy [6]. This gives rise to self-
heating effects and the formation of local hot spots.

Since Σ<𝑆(𝑘,𝐸) in Eq. (5) depends on the Green’s Func-
tion and vice-versa, these quantities must be iteratively com-
puted in the so-called self-consistent Born approximation till
convergence is reached. It is very convenient to solve Eqs. (1)
and (2) with a recursive Green’s Function (RGF) algorithm
[7]. Finally, regardless of the transport regime, ballistic or
dissipative, Eqs. (1) and (2) or Eq. (4) must be evaluated
at each possible 𝐸 and 𝑘 to obtain the current and charge
density of the considered devices. The charge is then self-
consistently coupled to the electrostatic potential through
Poisson’s equation expressed on a finite element grid.

III. RESULTS

Three applications have been selected to highlight the bene-
fits of atomistic quantum transport simulations. Each of them
relies on a different device configuration (Si nanowire, 2-D
semiconductor, Ag nano-filament) and on a different modeling
approach (tight-binding, Wannier functions, ab-initio basis).

A. Tight-Binding

Empirical nearest-neighbor tight-binding models, as pro-
posed by Slater and Koster [8], allow to account for full
bandstructures at low computational costs, while still capturing
every single atom constituting the investigated device struc-
tures. An example with bulk Si is given in Fig. 1(a), where
the 𝑠𝑝3𝑑5𝑠∗ parameterization of Ref. [9] has been used. By
turning on electron-phonon scattering, the bulk electron and
hole mobility of Si can be obtained, as shown in Fig. 1(b). This
requires either solving the linearized Boltzmann Transport
Equation or applying the “dR/dL” method and extracting the
resistance of samples with various lengths [10]. The results of
both approaches agree very well with available experimental
data, especially for electrons. However, with the chosen pa-
rameters the hole mobility tends to be overestimated by about
100 cm2/Vs, which remains acceptable in most applications.

The counterpart of tight-binding for phonons is the so-called
valence-force-field (VFF) method that produces the oscillation
frequencies and amplitudes of a given crystal based on a
limited number of input parameters, typically between 2 and
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Fig. 2. (top) Schematic view of an ultrascaled Si nanowire transistor with a
gate-all-around contact of length 𝐿𝑔=5 nm, a semiconductor diameter 𝑑=3 nm,
and an oxide thickness 𝑡𝑜𝑥=3 nm with a relative permittivity 𝜖𝑅=20. Transport
occurs along the 𝑥=<100> crystal axis. (bottom) Transfer characteristics 𝐼𝑑-
𝑉𝑔𝑠 at 𝑉𝑑𝑠=0.6 V of the nanowire FET above. The blue line represents the
ballistic limit of transport, the black one with crosses the case where electron-
phonon scattering is included, but phonons remain in equilibrium with their
surrounding, and the dashed orange curve the situation where both electron
and phonon populations are driven out-of-equilibrium. The quantities CR1
and CR2 indicate the current reduction caused by first going beyond ballistic
transport and then accounting for non-equilibrium phonons, respectively.

7 when Coulomb interactions are considered. VFF can deliver
the phonon data needed in mobility calculations. It can also be
used to evaluate the lattice thermal conductivity of materials,
as demonstrated in Fig. 1(c) for bulk Si. These results have
been obtained in the presence of anharmonic phonon scattering
[11].

Both tight-binding and VFF can be extended to nanostruc-
tures, where the parameters are assumed to be the same as
in bulk. As an example, the 𝑛-type ultra-scaled Si gate-all-
around nanowire field-effect transistor (FET) in Fig. 2 has been
simulated. Such logic switches are often seen as promising
candidates at the end of the roadmap for semiconductors since
they represent the most natural evolution of FinFETs. The
here plotted structure has a gate length of 5 nm only and
a diameter of 3nm. Its transfer characteristics are reported in
Fig. 2, starting from the ballistic limit of transport, then with
the inclusion of equilibrium phonon interactions, and finally
with an out-of-equilibrium phonon population.

Despite the very short gate contact electron-phonon scatter-

ing still plays a major role. Electrons interacting with phonons
may not only loose energy, but also change their direction
of propagation. The resulting backscattering process induces
a current reduction labeled CR1 in Fig. 2. A second current
decrease (CR2) occurs when the phonon population is allowed
to vary, e.g. when electrons transfer part of their energy to the
lattice. The additional crystal vibrations have the possibility
to interact with electrons close to the source extension of
the transistor, which further reduces the current magnitude
[6]. These findings indicate that no matter how short a Si
transistor becomes electron-phonon scattering should still be
fully accounted for to ensure accurate performance predictions.

B. Maximally Localized Wannier Functions

The main limitation of tight-binding and VFF is their
empirical character: no component can be simulated before a
parameter set has been established for its constituent materials.
This is very challenging when a large material space should
be explored for which no parameter has been created, as in
the case of 2-D semiconductors. Since the first experimental
demonstration of a single-layer MoS2 transistor [12] the
scientific interest for 2-D materials has not stopped growing,
also from a modeling point of view [13]. Based on simple
geometrical arguments it can be estimated that there exist more
than 6000 2-D crystals. Not all of them are stable, but several
thousands tight-binding and VFF parameter sets should still
be prepared to study all relevant materials and compare them
with each other.

Instead of tight-binding the Hamiltonian matrix in Eq. (1)
could be directly expressed in an ab-initio basis such as
density-functional theory (DFT) [15], which avoids any te-
dious parameterization, but is computationally much more
intensive. As an alternative an intermediate scheme based
on maximally localized Wannier functions (MLWFs) [14] is
presented here. It can be seen as a first step towards first-
principles devices simulations. The general idea is depicted
in Fig. 3. It consists in identifying a small unit cell that
is representative for the entire crystal structure of interest,
computing its bandstructure with a plane-wave DFT code such
as VASP [16] or Quantum ESPRESSO [17], and transforming
the results into a set of MLWFs with the Wannier90 tool [18].
No approximation is involved in this procedure since a unitary
transformation is performed. The only difference between the
original plane-wave and final localized basis is that the latter
only reproduces a sub-set of the full bandstructure, namely the
sub-bands that matter in transport calculations. The MLWF-
based Hamiltonian operator corresponding to the selected unit
cell is then constructed and up-scaled to describe the entire
simulation domain. It becomes a block-tridiagonal matrix
similar to the tight-binding one, with beyond nearest-neighbor
connections, but still ideal for quantum transport simulations.

This approach has been tested with the single-gate single-
layer MoS2 transistor in Fig. 4 that has a gate length of 10.7
nm. Its electronic structure as calculated with VASP [16] and
the PBE exchange-correlation functional [19] is first shown
and compared to the results obtained after a transformation
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Fig. 4. (left) Schematic view of a single-gate transistor with a monolayer of MoS2 as active region, 𝐿𝑔=10.7 nm, and an equivalent oxide thickness EOT=0.58
nm. (center) Comparison between the bandstructure of single-layer MoS2 as calculated with a plane-wave DFT tool [16] and PBE functional [19] (solid blue
lines) and with a quantum transport solver after a unitary transformation into MLWFs (red dots). (right) Phonon bandstructure of single-layer MoS2 based on
density-functional perturbation theory (DFPT) [21] .
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Fig. 5. (a) Ballistic transfer characteristics of the single-layer MoS2 transistor in Fig. 4 at 𝑉𝑑𝑠=0.05 V (solid blue line) and 0.68 V (dashed red line). (b)
Same as (a), but in the presence of electron-phonon scattering. (c) Spectral current of the same transistor as before showing the band coupling induced by
phonon emission. Red indicates high current concentrations, green no current, the dashed blue line refers to the conduction band edge.

into a MLWF basis with five 𝑑-like (three 𝑝-like) orbitals
per Mo (S) atom. A very good agreement can be observed,
although small discrepancies originating from the truncation
of long-range interactions are present.

The ballistic transfer characteristics 𝐼𝑑-𝑉𝑔𝑠 of this device at
𝑉𝑑𝑠=0.05 and 0.68 V are presented in Fig. 5(a). A negative
differential resistance (NDR) behavior can be noticed, i.e. the

current at high 𝑉𝑑𝑠 is smaller than at low 𝑉𝑑𝑠. It can be demon-
strated that this is an artifact of the ballistic limit of transport
where sub-bands with a limited energy width cannot be
transmitted from source to drain [20]. By turning on electron-
phonon scattering as in Eq. (5) the NDR disappears because
phonon emissions and absorptions connect independent sub-
bands that would otherwise not contribute to transport. This
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(c)

Fig. 6. (a) Realistic nano-filament structure composed of 4714 atoms. The gray dots refer to Ag atoms, the transparent yellow ones to Si. The latter form an
amorphous Si (aSi) layer. The nano-filament is embedded between two metallic plates. (b) Transmission probability through the metal-aSi-metal structure in
(a) with (dashed red line) and without (blue line) the Ag nano-filament inbetween. The position of the equilibrium Fermi level is indicated. A fully ab-initio
quantum transport approach has been used to compute these curves. (c) Simulated (dashed blue curves) and measured (solid red line) conductance through an
Ag nano-filament in terms of the conductance quantum 𝐺0=7.74e-5 S as a function of the applied voltage [23]. The insets represent the atomic configuration
corresponding to each conductance level, starting from the OFF-state (𝐺=1e-5 𝐺0).

is confirmed in Fig. 5(b-c). Note that solving Eq. (5) in the
present case requires the derivatives of the Hamiltonian matrix
𝐻(𝑘) in the MLWF basis with respect to the atom coordinates
and the phonon modes and frequencies. While the former
can be produced by Wannier90, the latter result from density-
functional perturbation theory calculations [21]. The phonon
bandstructure of single-layer MoS2 is reported in Fig. 4.

C. Ab-initio Model

The last application deals with a memristor cell [22] based
on the conductive bridging (CB) technology where an Ag
nano-filament grows between two metallic plates, either con-
necting them (low resistance state: logic 1) or keeping them
separated (high resistance state: logic 0). The CB memristor
concept is illustrated in Fig. 6(a). Such a structure has been
recently placed in the middle of a plasmonic cavity to form
an optical switch [23]. The transition from the high to the low
resistance state of the central memristor usually depends on
the displacement of few Ag atoms, but at first it was not clear
how many. This is exactly the kind of questions that atomistic
device simulations can address.

The schemes that have been proposed so far, nearest-
neighbor tight-binding and maximally localized Wannier func-
tions, are not suitable to simulate metallic nano-filaments
composed of several thousands atoms as in Fig. 6(a). First,
the strong localization of the Löwding orbitals in tight-binding
are not really compatible with the presence of delocalized
states as in metals. Secondly, the transformation from plane-
waves to MLWFs is limited to relatively small atomic systems
and becomes computationally too intensive when the atom
count exceeds several thousands. As a consequence, a full
DFT quantum transport approach is needed to take care of
the structure in Fig. 6(a) [24].

This can be done by coupling a DFT package working
with a localized basis, e.g. SIESTA and its linear combination
of atomic orbitals [25] or CP2K and its contracted Gaussian

Fig. 7. Coupling scheme between a DFT solver relying on a non-orthogonal,
but localized basis set, e.g. SIESTA [25] or CP2K [26] and a quantum
transport tool importing the prepared Hamiltonian 𝐻 and overlap 𝑆 matrices
and performing device simulations with them.

orbitals [26], and a NEGF solver. Here, it has been decided
to transfer the Hamiltonian and overall matrices produced
by CP2K to our in-house quantum transport code [4]. The
developed work flow is shown in Fig. 7 and explained in great
details in Ref. [27]. Basically, the same simulation framework
as for tight-binding and MLWF can be used, except that more
powerful numerical algorithms must be implemented to keep
the computational burden manageable.

Simulation results can be found in Fig. 7(b-c). In the first
sub-plot, the energy-resolved transmission probability between
two metallic plates separated by an amorphous Si matrix
is shown, once without any nano-filament and once with it.
The largest difference between both curves occurs around the
equilibrium Fermi level of the structure. In the second sub-plot,
the quantum conductance computed with DFT+NEGF in the
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linear theory approximation is compared with the experimental
data of Ref. [23]. It has been discovered that each time a single
atom is added to the growing nano-filament, its conductance
abruptly changes from one plateau to another. However, the
steps are not equal to the conductance quantum 𝐺0=7.748e-5
S, but to a fraction of it since electrons must tunnel through
the filament head to reach the opposite metallic plate. Due
to the extremely narrow cross section of the filament and
the resulting high current densities self-heating effects are
expected to be important. They have not been studied so far
because of the difficulty to properly include Eq. (5) into a
DFT+NEGF solver and combine it with phonon transport.

IV. CONCLUSION

This paper has presented three applications of atomistic
device simulations where the modeling approach has been
adapted to the characteristics of each studied configura-
tion. Generally, it can be stated that in well-known and -
parameterized materials empirical tight-binding models offer
a satisfactory level of accuracy and enable the inclusion of
dissipative scattering mechanisms. In cases where a small and
representative unit cell can be identified from the device struc-
ture a plane-wave DFT calculation combined with a unitary
transformation into a maximally localized Wannier function
basis appears as a very convenient solution. Going beyond the
ballistic limit of transport is possible in this framework too.
Finally, in complex geometries with metals, unconventional
materials, or complex heterojunctions it is recommended to
adopt a DFT+NEGF solver, which is very often restricted
to ballistic simulations. Including electron-phonon scattering
in large systems treated with DFT+NEGF still represents
one of the greatest challenges in the field, together with
modeling electron-electron interactions or coupled electron-
phonon-photon phenomena.
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