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Abstract—In this paper, the low and high field mobilities of
graphene on substrates are studied, by means of deterministic
solutions, obtained using a Discontinuous Galerkin (DG) nu-
merical scheme, of the semiclassical Boltzmann equation for
charge transport in graphene. It is shown that there is a strong
dependence on the distance between the impurities and the
graphene layer with significant changes both in the low and
high field mobility curves. We remark that the use of a DG
scheme avoids the intrinsic noise typical of the Direct Monte
Carlo Simulation (DSMC) results and allows to evaluate the low
field mobility with considerable accuracy, making less ambiguous
the comparison with experimental measurements.

I. INTRODUCTION

The design of graphene-based electron devices requires an
in-deep understanding of the basic transport properties of
this material. In realistic situations, the graphene sheet is
put over an oxide layer which is the source for additional
scatterings between the electrons flowing inside the graphene,
and the impurities of the substrate. This remote electron-
impurity scattering produces a degradation of the mobility
curve (see for example [1], [2]). Therefore in order to develop
accurate Computer Aided Design (CAD) tools it is necessary
to determine the dependence of the mobility curve on the
impurities.

From a modeling point of view several expressions for
the dielectric function have been proposed. Here we use
the model proposed in [3] which, among several physical
parameters, depends in a significant way on the distance
between the graphene layer and the impurities inside the oxide.
The distance d can vary from zero to few angstroms and
depends on the specific specimen one is dealing with.

We want to investigate such a dependence by solving
the semiclassical Boltzmann equation for charge transport
in graphene including, beside the standard electron-phonon
interactions, also the electron-impurity scattering. Solutions
of the Boltzmann equations can be obtained with a DSMC
approach which of course presents an intrinsic statistical noise,
specially at low electric fields. This fact makes it difficult
to extract the low field mobility from DSMC results. A
promising alternative is to resort to deterministic numerical
schemes, like Weighted Essentially Non-Oscillatory (WENO)
ones (see [4]). In the present paper, we use the DG method

developed in [5], [6] which gives accurate solutions, so that
it is possible to numerically evaluate the low field mobility
with good accuracy. For hydrodynamical models, in view of
the simulation of graphene based devices, the interested reader
is referred to [7], [8].

Besides the parameters discussed above, the dependence on
the doping (or equivalently the Fermi energy) must be consid-
ered. We will suppose that a gate voltage is applied producing
a shift of the Fermi level εF in the energy band diagram.
Positive Fermi levels will be considered and, therefore, the
material behaves as it were n-doped. This situation allows us
to neglect the charge transport of the electrons in the valence
band. In the meantime tunneling effects around the Dirac
point are negligible as well and a semiclassical description
is sufficiently accurate from a physical point of view.

The plan of the paper is as follows. In Sect. 2 the trans-
port equation for charge carriers in graphene on substrate is
presented. In Sect. 3 the numerical results of charge transport
in graphene on SiO2 are shown and discussed. In particular,
the dependence of the mobility curves on the position of the
impurities, present in the oxide, is investigated.

II. SEMICLASSICAL MODEL FOR CHARGE TRANSPORT IN
GRAPHENE ON A SUBSTRATE

For the purposes to investigate the peculiarities of the charge
carrier transport in n-doped graphene, a semiclassical transport
model for electrons in the conduction band is considered
sufficiently accurate. Since a homogeneous graphene sheet is
investigated, spatial dependence is ignored and the model is
given by the single Boltzmann equation
∂f(t,k)

∂t
− e

h̄
E · ∇kf(t,k) =

∫
S(k′,k) (1− f(t,k))

× f(t,k′) dk′ −
∫
S(k,k′) f(t,k) (1− f(t,k′)) dk′ . (1)

by assuming the K and K ′ valleys as equivalent.
The unknown f(t,k) represents the distribution function of
charge carriers at time t and with wave-vector k. ∇k denotes
the gradient with respect to the wave-vector. The microscopic
velocity v is related to the energy band ε by

v =
1

h̄
∇k ε .
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With a very good approximation [9] a linear dispersion relation
holds for the energy bands around the equivalent Dirac points;
so that ε = h̄ vF |k|, where vF is the (constant) Fermi velocity
and h̄ is the Planck constant divided by 2π. The elementary
(positive) charge is denoted by e, and E is the electric field,
here assumed to be constant. The right hand side of Eq. (1) is
the collision term representing the interaction of electrons with
impurities and phonons, the latter due to both the graphene
crystal and substrate [10]. Acoustic phonon scattering is intra-
valley and intra-band. Phonon scattering with longitudinal and
transversal optical phonons (LO and TO, respectively) is
intra-valley and can be intra-band or inter-band. Scattering
with optical phonons of type K pushes electrons from a
valley to the other one (inter-valley scattering). In addition
to the interactions already present in the suspended case,
surface optical phonon scattering and charged impurity (imp)
scattering induced by the substrate are also included. Here,
the substrate considered is SiO2. Phonons are assumed to
be at thermal equilibrium and described by a Bose-Einstein
distribution for each branch.

The kernel of the collision operator is the transition rate
S(k′,k), which is given by the sum of terms of the kind∣∣∣G(ν)(k′,k)

∣∣∣2 [(n(ν)
q + 1

)
δ
(
ε(k)− ε(k′) + h̄ ω(ν)

q

)
+ n(ν)

q δ
(
ε(k)− ε(k′)− h̄ ω(ν)

q

)]
, (2)

related to electron-phonon scatterings and other terms cor-
responding to the scatterings with the impurities. The index
ν labels the νth phonon mode, G(ν)(k′,k) is the scattering
matrix, which describes the scattering mechanism, due to
phonons ν The symbol δ denotes the Dirac distribution, ω(ν)

q

is the νth constant phonon frequency, n(ν)
q is the Bose-Einstein

distribution for the phonon of type ν,

n(ν)
q =

1

eh̄ ω
(ν)
q /kBT − 1

,

kB is the Boltzmann constant and T the constant graphene
lattice temperature. The expressions of the electron-phonon
scattering matrices used in our simulations are as follows.
For acoustic phonons, we consider the elastic approximation(

2n(ac)
q + 1

) ∣∣∣G(ac)(k′,k)
∣∣∣2

=
1

(2π)2

πD2
ac kB T

2h̄ σm v2
p

(1 + cosϑk ,k′) , (3)

where Dac is the acoustic phonon coupling constant, vp is the
sound speed in graphene, σm the graphene areal density, and
ϑk ,k′ is the convex angle between k and k′.
As said, there are three relevant optical phonon scatterings, the
longitudinal optical (LO) and the transversal optical (TO), and
the K phonons. The relative scattering matrices are∣∣∣G(LO)(k′,k)

∣∣∣2 =
1

(2π)2

πD2
O

σm ωO
(1− cosϕ) (4)∣∣∣G(TO)(k′,k)

∣∣∣2 =
1

(2π)2

πD2
O

σm ωO
(1 + cosϕ) (5)

∣∣∣G(K)(k′,k)
∣∣∣2 =

1

(2π)2

2πD2
K

σm ωK
(1− cosϑk ,k′) , (6)

where DO is the optical phonon coupling constant, ωO is
the optical phonon frequency, DK is the K-phonon coupling
constant and ωK is the K-phonon frequency. We denote by
ϕ the sum of the angles ϑk ,k′−k and ϑk′ ,k′−k, which are
the convex angles between k and k′ − k and between k′ and
k′ − k, respectively.
The presence of the SiO2 substrate requires including also the
interactions between the electrons of the graphene sheet and
the remote phonons and impurities of the substrate. The remote
optical phonons are assumed to have an energy equal to 55
meV and a deformation potential Df = 5.14×107 eV/cm. The
electron-phonon scattering matrices have the same form as (4)
and (5). Regarding the remote impurity scattering, we assume
that they stay in a plane at distance d from the graphene
sheet. The definition of the transition rate for electron-impurity
scattering is highly complex; so many approximate models are
proposed. We adopt the transition rate used in [3]

S(imp)(k,k′) =
2π

h̄

ni
(2π)2

∣∣∣∣Vi(|k− k′|, d)

ε(|k− k′|)

∣∣∣∣2
× (1 + cosϑk ,k′)

2
δ (ε(k′)− ε(k)) , (7)

where
a) ni is the number of impurities per unit area.

b) Vi(|k− k′|, d) = 2πe2 exp(− d |k− k′|)
κ̃ |k− k′|

,

– d is the location of the charged impurity measured
from the graphene sheet

– κ̃ is the effective dielectric constant, defined by
4πε0 (κtop + κbottom) /2, where ε0 is the vacuum di-
electric constant and κtop and κbottom are the relative
dielectric constants of the medium above and below
the graphene layer. In typical cases, the materials are
SiO2 and air, implying κ̃ = 4πε0 (1 + κSiO2

) /2 ≈
4π × 2.45 ε0.

c) the function ε(|k−k′|) is the 2D finite temperature static
random phase approximation (RPA) dielectric (screening)
function appropriate for graphene, and it is defined as
follows

ε(|k− k′|) = 1 +
qs

|k− k′|
− π qs

8 kF
if |k− k′| < 2 kF ,

ε(|k− k′|) = 1 +
qs

|k− k′|
−
qs
√
|k− k′|2 − 4 k2

F

2 |k− k′|2

− qs
4 kF

asin
(

2 kF
|k− k′|

)
otherwise,

– qs =
(
4 e2 kF

)
/ (κ̃ h̄ vF ) is the effective Thomas-

Fermi wave-vector for graphene; it can be rewritten
in terms of the dimensionless Wigner-Seitz radius as
qs = 4rSkF ; (we set rS = 0.8)

– kF = εF / (h̄vF ) is the Fermi wave-vector.
The physical parameters for the scattering rates are summa-
rized in Table I. Some degree of uncertainty is still present
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in the literature about the values of the scattering parameters
[10]. However, our conclusions are quite independent on that.

TABLE I
PHYSICAL PARAMETERS FOR THE SCATTERING RATES.

vF 108 cm/s vp 2 × 106 cm/s

σm 7.6 × 10−8 g/cm2 Dac 6.8 eV

h̄ ωO 164.6 meV DO 109 eV/cm

h̄ ωK 124 meV DK 3.5 × 108 eV/cm

h̄ ωop−ac 55 meV Df 5.14 × 107 eV/cm

III. NUMERICAL RESULTS

The Boltzmann equation is discretized by using a DG
approach. For the sake of brevity we skip the details about
the numerical scheme; the interested reader is refereed to [5].
Since only electron dynamics in the conduction band of the
valley K is considered, the (conduction) electron density ρ
and the (positive) Fermi energy εF are related by

ρ =
2

(2π)2

∫
f(t,k) dk =

2

(2π)2

∫
f(0,k) dk

=
2

(2π)2

∫
1

1 + exp
(
ε(k)−εF
kB T

) dk (8)

which remains constant because the interband transitions can
be neglected. We remark that the total charge density is equal
to 2 ρ, because we must also consider the equivalent valley
K ′.

We assume a lattice temperature T of 300 K, which will
be kept constant. The surface impurity density ni is set equal
to 8.86 × 1011 cm−2. The impurities are supposed to be
distributed in a homogeneous way. A range from 0 to 1 nm is
considered for the distance d between the graphene sheet and
the remote impurities.

The simulations are performed at several values of the
electric field and electron density. We take SiO2 as substrate.
The physical situation is schematically depicted in Fig. 1.
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Fig. 1. The graphene sheet over a substrate.

In Fig. 2 and Fig. 3 the low field mobility (0.02 kV/cm)
versus the electron density is reported for several values of the
parameter d. The qualitative behavior, as regards the electron
density, is similar to the expected one, see for example [1],
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Fig. 2. Mobility for an electric field of 0.02kV/cm versus the electron density
ρ for several values of the parameter d (in nm).
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Fig. 3. Mobility for an electric field of 0.02kV/cm versus the electron density
ρ in the case d = 0.

[2]. Our results clearly highlight a significative dependence of
the mobility curves on the depth of the impurities inside the
oxide. For small values of d one has an evident degradation
of the mobility with respect to the suspended graphene case
[11]. Therefore d is a relevant design parameter to be taken
into account. For very small values of d (d = 0 in Fig. 3) there
is a maximum of the low field mobility for an intermediate
electron density, while it decreases for higher densities. For
values around d = 0.5 nm, the low field mobility increases
monotonically with the electron density. For higher values,
about d = 1 nm, one recovers the mobility of the suspended
case. To complete the analysis, in Figs. 4-5 there are plotted the
mobility curves versus the electron density under an electric
field of 10 kV/cm and 20 kV/cm, respectively. Again it is
evident the strong influence of d. The qualitative dependence
on the electron density is similar to the case of low field. As
the electric field increases, the presence of a maximum value
of the mobility for moderate doping is clearer and, of course
for d ≈ 1 nm we get the suspended case.

IV. CONCLUSIONS

Scattering between electrons and the remote impurities of
the oxide is very important to determine the mobility curves
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Fig. 4. Mobility for an electric field of 10 kV/cm versus the electron density
ρ for several values of the parameter d (in nm).
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Fig. 5. Mobility for an electric field of 20 kV/cm versus the electron density
ρ for several values of the parameter d (in nm).
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Fig. 6. Velocity for an electric field of 20 kV/cm versus the electron density
ρ for several values of the parameter d (in nm) in the stationary regime.

in graphene on a substrate. In the models describing such an
interaction, there is the presence of several parameters. In our
analysis, by considering the dielectric function suggested in
[3], it has been shown that a crucial parameter is the depth
of the remote impurities with respect to the graphene layer.
The statistical distribution of the impurity positions inside

the substrate is necessary for a correct determination of the
mobility curves.

Several results are available in the literature but in the most
part the dependence on d is ignored or it is not clear. The
behavior of the velocity (Fig. 6, in the case d = 0) agrees with
results obtained in [12] (Fig. 5) and differs from the data in [2],
even if the discrepancy with this latter paper is not surprising,
because we consider a simple sheet of graphene on SiO2 with
two (source and drain) contacts, while in ref. [2] a graphene
ribbon with two additional gate contacts has been analyzed.
We have also a good agreement with [1] (Fig. 5) for d =
0, while comparisons with [13]–[17] are difficult to perform
and a certain degree of uncertainty still remains regarding the
physical parameters and the dielectric function models.
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