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Abstract—We present a computationally inexpensive frame-
work to compute the neutral flux in high aspect ratio structures
during three-dimensional plasma etching simulations. It is based
on a one-dimensional radiosity approach and is applicable to
simulations of convex-shaped rotationally symmetrical holes and
convex-shaped trenches of infinite length. The framework is
intended to replace the full three-dimensional simulation step
required to calculate the neutral flux during plasma etching
simulations. Especially for high aspect ratio structures, the
computational costs of the full three-dimensional simulation
of the neutral flux at the desired spatial resolution conflicts
with practical simulation time constraints. Our results are in
agreement with those obtained using reference three-dimensional
ray tracing simulations for various convex geometries. Within this
framework, we present a comprehensive analysis of the influence
of the geometrical properties of high aspect ratio structures as
well as of the particle sticking probability on the particle flux.

I. INTRODUCTION

In the context of NAND flash cell fabrication [1], the pro-
cessing of high aspect ratio (HAR) holes is a key prerequisite.
One of the processing steps used to fabricate HAR structures is
ion-enhanced chemical etching (IECE) [2]. The simulation of
such plasma etching processes requires the recalculation of the
local neutral flux distribution on the surface at each simulation
time step. This is necessary, because the surface may evolve at
every simulation time step. For HAR structures, the local flux
originating from re-emission is predominant and the local flux
rates can easily vary by several orders of magnitude along the
structure depth. At the spatial resolutions desired for practical
simulation cases, this leads to very high computational costs
for a conventional three-dimensional computation of the local
neutral flux using Monte Carlo ray tracing [3] or radiosity
based [4] methods. Therefore, we suggest to use a one-
dimensional approximation for the calculation of the local
neutral flux inside HAR structures.

We have recently introduced a one-dimensional radiosity
approach for the calculation of the neutral flux in cylindrical
holes [5]. A general formula for the view factor between the
inner surfaces of two coaxial cone-like segments has been
established, although until now it has only been applied to
cylindrical holes. The radiosity equation has been formulated
in a receiving perspective, which allows for fully adsorbing
elements.
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Fig. 1. Cross-sections of simulation domains with vertical walls (a) and with
a kink at one half of the depth (b). ss, s, and s designate the sticking
probabilities for the source, the wall, and bottom region, respectively. (c)
illustrates the surface model showing the relation between the received flux
R, the adsorbed flux A, and the re-emitted flux RE; source areas emit flux
E, which is independent of the received flux R.

In this work the one-dimensional radiosity approach is
extended to handle convex-shaped rotationally symmetrical
holes. Additionally, convex-shaped trenches of infinite length
are introduced. We validate the resulting flux distributions
along the wall and at the bottom of holes and trenches using a
reference Monte Carlo ray tracing simulator [6]. Furthermore,
we study the influence of geometric variations along the wall,
as well as the variations of the particle sticking probability on
the flux distributions.

II. SIMULATION DOMAIN

For cylindrical holes, the simulation domain is a rotationally
symmetric closed convex surface. For trenches, the simulation
domain is a trench with a closed convex symmetric cross-
section. The neutral flux source is modeled by closing the
structures at the top. This leads to a disk-shaped source for
holes and a strip-shaped source for trenches. Fig. la and
Fig. 1b illustrate the cross-sections of domains with vertical
walls and with a kink at one half of the depth, respectively.

The surface adsorption is modeled using a locally constant
sticking probability s. The received flux R is split according to
s into an adsorbed flux A and a re-emitted flux RE as depicted
in Fig. lc. Source areas additionally emit flux £ independent
of R.
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For the remainder of this work, a sticking probability s, = 1
is used for source areas, to prevent any influence of these
areas on the flux distribution in the rest of the simulation
domain. The bottom is modeled as a fully adsorbing area
with a sticking probability s, = 1. A constant sticking
probability s,, is used for the walls of the structures. The
choice of the wall and bottom sticking probabilities represents
a reasonable approximation to the prevalent conditions for the
neutral particles in an IECE environment.

II1. RADIOSITY FORMULATION

The common assumptions for neutral particles, which also
applies to our framework [5], is that all sources/surfaces are
ideal diffuse and that the transport of the neutral particles is
ballistic [7]; therefore, the use of a radiosity formulation is
admissible. The prevalent radiosity formulation which is lined
up to be solved for the radiosity (emitted + reflected energy)
is not suitable for fully adsorbing areas; the radiosity vanishes
for those areas and therefore the adsorbed energy cannot be
recovered.

We use a formulation for the received flux. Assuming a
constant flux and a constant sticking probability over each
surface element, the received flux R for a surface element i is

R = Z(Eiji)JrZ((l — ;) RjFy;) (1)

and the relation to the adsorbed flux A is
Ai = RiSi, (2)

where s is the sticking probability, E is the self-emitted energy,
and F}; is the view factor (proportion of the radiated energy,
which leaves element j and is received by element 7). Resolved
for R and rewritten as matrix equation we obtain

(I-diag(1—s)F")-R=F" - E, (3)

with the vector of emitted flux F, a vector of sticking
probabilities s, and a matrix of view factors F (where Fj;
corresponds to the view factor ¢ — j).

We approximate the solution of the resulting diagonally
dominant linear system of equations (3) using the Jacobi
method. Each iteration of the Jacobi method can be imagined
as a concurrent diffuse re-emission of each element to all
other elements. The adsorbed flux A is obtained by multi-
plying the entries in the solution for R with the correspond-
ing sticking probability s of the element (2). The relation
| A|l — || E||=0, which holds for closed surfaces, can be
used to test the implementation and to define a stopping
criterion for the Jacobi iterations.

IV. VIEw FACTORS

To assemble the matrix of view factors F' in (3) we must
evaluate the view factors between all possible pairs of surface
elements.

We discretize the surface of the structure into discrete
elements along the line of symmetry. As an example, the
shape of the resulting surface elements for a trench and hole
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Fig. 2. Two surface elements which result when discretizing the domain (b)
are displayed: (a) is the side view of two surface elements a and b, which
results from a trench discretization and (c) is the isometric view of two surface
elements a and b, which results form a hole discretization.

are visualized in Fig. 2: two vertical ranges are indicated in
Fig. 2b and the resulting surface elements a and b are shown
for a trench and a hole in Fig. 2a and Fig. 2c, respectively.
For the trench, each element is defined by two strips. For the
hole, each element takes the form of a sliced cone.

A. Trenches

The view factor between two segments of a symmetric
convex trench with a constant cross section, as depicted in
Fig. 2a, is derived using the crossed-strings method [8]. This
method computes the view factor between two surfaces with
a constant cross section and infinite length utilizing a two-
dimensional re-formulation of the problem. For two mutually
completely visible strips of infinite length the view factor is [8]

(d1 + dg) — (81 + 82)
2'@1 ’

Fio = “)
where d; and dy denote the lengths of the diagonals when
connecting the cross-section of the two strips to form a convex
quadrilateral, s; and so denote the lengths of the sides of
that quadrilateral which connect the strips, and a; denotes the
length of the side of the quadrilateral which represents the
emitting strip.

Fig. 3a is a side view of the four strips from Fig. 2a. The
view factors from the top right strip a, towards the other three
strips is visualized. The view factor between the two segments
a and b is

Fa%b = Farﬁbr + Far—)bp (5)

where the subscripts denote the side of the strip according to
Fig. 3a. a; can be neglected, as the cross section is symmetric.
The view factor of an element to itself is

Fa—>a = La,.—ap (6)
where again the reverse direction can be neglected due to

symmetry. (4) is used to compute the view factors between
individual strips in (5) and (6).
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Fig. 3. Areas contributing in the view factor computation between two surface
elements a and b. (a) Side view on the four infinite strips which correspond
to the surface elements a and b from Fig. 2a; the view factors from strip a,
towards the other three strips are labeled. (b) Isometric view on two sliced
cones which correspond to the surface elements a and b from Fig. 2c; the
four limiting aperture disks are labeled.

B. Holes

In [5], we derive a general analytic formulation to compute
the view factors between two segments of a rotationally
symmetric convex hole as depicted in Fig. 2c. It is based on
the view factor between two coaxial disks of unequal radii
and ry at a distance z [9] and the reciprocity theorem of view
factors. The final goal to compute the view factor between two
elements a and b (compare Fig. 3b) is divided into multiple
inexpensive analytic view factor computations between coaxial
disks which mark the two limiting apertures of each element.
This is possible as we only allow elements whose surfaces are
mutually completely visible. For more details, the reader is
referred to [5].

V. RESULTS

The computed adsorbed flux in all of the following results
is normalized to the flux which a surface of the same sticking
probability would adsorb, if it is fully planar-exposed to the
source. The aspect ratio (AR) is defined as % for holes
and Z‘;ﬁig for trenches.

In [5], we evaluated the quality of our one-dimensional
radiosity model for cylinders of ARs 5 to 45 and sticking prob-
abilities between 0.02 and 0.2. Good agreement was achieved
when comparing to the results obtained with a reference Monte
Carlo ray tracing simulator [6]. Extending this validation,
several geometric variations (compare Fig. 4) including an
extended, tapered, and kinked sidewall are applied to a trench
and a hole with AR=25.

Fig. 5 shows the resulting flux distributions along the wall
and at the bottom together with the reference results obtained
from a Monte Carlo ray tracing simulation: good agreement is
achieved. Due to the implicit representation of the surface in
the ray tracing simulator sharp edges get smoothed out. This
leads to differences near the wall-bottom interface, visible in
Fig. 5b and Fig. 5d.

In Fig. 5a and Fig. 5c, the vertical dashed lines mark
positions at 25% and 75% of the total depth of the structure,
which are used as reference locations when comparing the
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Fig. 4. Cross sections of the geometric variations of the wall for holes and
trenches (shown for AR=3). Starting from a vertical wall, the bottom width
is increased by 25% (extended) and reduced by 25% (tapered). Finally, the
width at 1/2 of the total depth is increased by 12.5% to form a kink. The
resulting angle «, which is identical for all three variations, is depicted.

wall flux in the following. For a sticking probability s,, = 0.2,
Fig. 5a and Fig. 5b show small variations along the wall and
at the bottom for both, holes and trenches; solely the presence
of the kink clearly increases the flux on the bottom half of the
wall compared to the vertical structure (about +25% at 75%
of the total depth for both, trenches and holes).

When decreasing the sticking probability to s,, = 0.01,
Fig. 5c indicates stronger deviations along the entire wall for
all geometries. The variation of the wall-flux at 25% of the
total depth is about +4% for both, trenches and holes. At 75%
of the total depth the variation is —7% to +17% for the holes
and —7% to +10% for the trenches. Fig. 5d reveals a variation
of about £25% and +£10% for the flux at the center of the
bottom in a hole and a trench, respectively.

Our simulation results show that low sticking probabilities
increase the influence of geometric variations on the flux
distributions along the wall and especially at the bottom of
high aspect ratio structures.

VI. SUMMARY AND OUTLOOK

We provide an approximation of the local neutral flux in
three-dimensional plasma etching simulations of high aspect
ratio structures using a one-dimensional radiosity approach.
The framework presented in [5] is extended to handle convex-
shaped trenches of infinite length. Comparing the results
for various convex configurations using a rigorous three-
dimensional Monte Carlo ray tracing simulation shows good
agreement and applicability of our model for practical sit-
uations. We study the influence of geometric variations on
the wall as well as the sticking probability on the flux
distributions. The results indicate a strong influence for low
sticking probabilities which are typical in IECE simulations
of high aspect ratio structures.
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(a) Wall, AR=25, s,, = 0.2, o = 0.286
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(b) Bottom, AR=25, s,, = 0.2, a = 0.286
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(d) Bottom, AR=25, s,, = 0.01, oo = 0.286
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Fig. 5. Normalized flux distributions along the wall and at the bottom of a hole and a trench of AR=25 for sticking probabilities s, = 0.2 (a) (b) and
sw = 0.01 (c) (d). The geometry of the structures is varied (according to Fig. 4); The results for structures with vertical sidewalls are plotted as a reference.
Lines represent the results of the reference ray tracing simulator [6]. The deviations between ray tracing and radiosity towards the wall-bottom interface are
due to the limited grid resolution of the ray tracing simulator. The flux distributions at the bottom span the interval [0.75,0] for the tapered structures and
[1.25, 0] for the extended structures. In (a) and (c), the vertical dashed lines mark positions at 25% and 75% of the total depth.
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