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Abstract—We present the first deterministic approach for
solving the Poisson and Boltzmann equations for electrons in
graphene based on the expansion of the Boltzmann equation
in Fourier harmonics and a Gummel iteration scheme. The
approach is applied to a double-gate graphene field effect tran-
sistor considering anisotropic scattering by acoustic and optical
phonons as well as remote phonons, emerging from the gate oxide.
Results are presented which show the device characteristics and
the feasibility of our simulator.

I. INTRODUCTION

Since the discovery of graphene, which was awarded with
the Nobel Prize [1], a great amount of work has been put into
the research of its properties, e.g. by Graphene Flagship [2].
To receive a detailed picture about the electronic properties
of a device that uses graphene a precise modeling of the band
structure and scattering mechanisms must be possible. The
deterministic solution of the Boltzmann equation (BE) based
on an expansion of k-space into Fourier harmonics appears
to be a reasonable approach [3]. It has unique advantages
compared to the Monte Carlo approach, e.g. no stochastic
errors and the possibility to perform small-signal analysis [4].
For silicon and GaAs devices deterministic solvers of the BE
with a Fourier harmonics expansion of k-space have been
developed successfully in Refs. [5] and [6], respectively.
In graphene devices the major differences are the true 2D
channel, the band structure and the scattering mechanisms
which suppress back-scattering [7]. A Monte Carlo BE solver
for graphene considering anisotropic scattering has been
demonstrated in Ref. [8].

In this work we present a self-consistent deterministic solver
for the coupled system of Poisson equation (PE) and BE for
a double-gate graphene field effect transistor (DGFET).

II. SIMULATION APPROACH

We consider the device shown in Fig. 1. It is assumed to be
translational invariant in z-direction. The BE is solved one-
dimensionally in y-direction (transport direction) and the PE
is solved two-dimensionally in the x-y-plane. In the following
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Fig. 1. Double gate graphene FET with SiO2 as insulator. The red areas
indicate the contact areas.

we will show how to set up the equations for the BE and PE.

A. The Boltzmann Equation

The stationary BE is solved for electrons in two-dimensional
k-space and one-dimensional transport in real space:

FBE : =
1

h̄
Fy(y)

∂

∂ky
fν(y,k) + vf

∂

∂y
fν(y,k)− Sν{f}

= 0,

with fν(y,k) the distribution function, ν the valley, Fy =

q ∂V (x0,y)
∂y the force, x0 the spatial coordinate of graphene,

vf the group velocity in transport direction and Sν{f} the
scattering integral. Both contacts are implemented by a gen-
eration/recombination rate proportional to a recombination
velocity [9] which is added to the BE at the source and drain
contact grid points.

The kinetic energy is treated as a classical quantity arising
from a valley model. The potential energy is obtained from
the solution of the PE by −qV (x, y) with q the positive
electron charge and V (x, y) the electrostatic potential. The
total electron energy is then the sum of both energies.

The conduction band of graphene has its minima at the six
Dirac points named K and K′ as shown left in Fig. 2. For
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Fig. 2. Left: First Brillouin zone of graphene with the six Dirac points
that lie at K and K′. Right: The linear sections are grouped together into
two degenerate valleys with the minimum energy at the origin of the new
coordinate system.

the expansion of the k-space into Fourier harmonics a valley
model with the minimum energy at the origin of the coordinate
system is required [4]. We approximate the band structure in
the vicinity of the six Dirac points which yields

E(k) = +h̄vf |k|,

where vf = 8.8 · 105 m s−1 is the Fermi velocity. The linear
sections are grouped into two degenerate valleys, which is
shown on the right of Fig. 2.

The H-Transformation [3] and an expansion into Fourier
harmonics [4] as well as a projection onto equi-energy surfaces
is applied. The Fourier expansion is truncated at an order
consistent with the desired precision.

We use the box-integration in real space and energy space
to obtain a set of equations, which are derived in Refs. [4], [5].
It should be noted that considering the Pauli principle leads to
a non-linear system of equations due to the scattering term.

We consider acoustic [10], optical [11] (PH) and remote
phonons [12] (RP) emerging from the gate oxide. In an
effective mass approximation the electronic states of graphene
near the Dirac points are described by the 2D Dirac equa-
tion. This leads to two-component wave functions which are
mathematically equivalent to spinors [13]. From this it can be
derived that back-scattering is suppressed [14]. We therefore
included an anisotropic term in the transition coefficient of all
scattering mechanisms

Ck,k′ =
1 + cos(θ)

2
, (1)

where θ is the angle between the initial and final wave vector.
The inclusion of the anisotropic scattering mechanisms led
to similar difficulties as for the simulation of GaAs [6]. The
scattering term Sν{f} is given by the single particle scattering
integral:

Sν{f} =
1

(2π)2

∑
ν′,η,σ

∫ {
(1− fν(y,k)Sν,ν

′

η,σ (y,k,k′)

× fν′
(y,k′)

− (1− fν′
(y,k′))Sν

′,ν
η,−σ(y,k′,k)fν(y,k)

}
d2k′,

(2)

where Sν,ν
′

η,σ (y,k,k′) is the transition rate containing the
anisotropic scattering matrix element, η is the type of scat-
tering and σ = ±h̄ωη is the energy transfer. The projection
of the scattering term onto Fourier harmonics and equi-energy
lines is calculated as [4]

Sν(y, ε̃) =
1

(2π)2

∫
Sν{f}δ(ε̃− ε̃ν(y,k))Ym(ϕ)d2k, (3)

where Sν{f} is the single particle scattering integral. The
transition rate Sν,ν

′

η,σ is given by

Sν,ν
′

η,σ (y,k,k′) = cν,ν
′

η,σ (y,k,k′)δ(εν(k)− εν′
(k′)− σ).

For RP the transition coefficient can be expressed as [12]

cν,ν
′

η=RP,σ(k,k′) = γ0
Ck,k′

|k,k′| ,

where γ0 contains all constants and the wave vector |k,k′| is
given by

|k,k′|2 = k2 + k′2 − 2kk′ cos(θ).

Because the transition depends on the angle between initial
and final wave vector higher harmonic orders have to be
considered.

B. The Poisson Equation

Neglecting holes, the PE reads

FPE := ∇ · [ε∇V (x, y)] + q[n(x, y)−Ni] = 0,

with n(x, y) the electron density, Ni is the intrinsic electron
concentration in graphene and ε the dielectric constant. The
discretization by box-integration yields a set of equations as
in Ref. [5]. The electron density ninv can be calculated by the
zeroth moment of the distribution function

ninv(y) = 2
√

2π
∑
ν

∫
dHZν(H)fνm=0(y,H)

where Zν(H) is the density of states. The electron density is
used to couple the PE with the BE in the Gummel iteration.
The BE is coupled with the PE by the force Fy(y).

III. RESULTS

The results are presented for a DGFET as shown in Fig. 1.
To compute the potential and the distribution function the PE
and BE are solved with a Gummel iteration method [15] until
self-consistency is reached. We consider 33 grid points in
real space for the BE and choose the H-grid spacing to be
5.648 meV which is about 1/26 of the optical phonon energy.
Moreover, we truncate the expansion into Fourier harmonics
above the fifth order since no significant change in the drain
current was observed. We can show that the resulting set of
equations for the BE up to first harmonic order is well behaved
and no instabilities occurred during the simulation even for
higher orders. The computation of an operating point on a
machine with 24 cores takes approximately one hour.

The low-field mobility versus inversion density is shown
in Fig. 3 for a system homogeneous in y-direction. The
calculations are performed for the intrinsic phonons, PH only
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Fig. 3. The mobility µ vs. inversion density ninv considering the intrinsic
phonons (solid line) and the remote phonons (dashed). Depending on the
choice of gate oxide, the remote phonons can have a major influence.
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Fig. 4. Inversion density ninv in transport direction for different gate bias
VTGS considering the Pauli principle (solid lines) and without (dashed lines).

and as well as with the remote phonons, PH+RP. First, one
should notice the high mobility for a low inversion density
when only PH is considered. Second, it can be seen that when
RP are included the mobility is seriously degraded.

The electron densities for VDS = 10 mV and different gate
bias VTGS are shown in Fig. 4 for the transistor. The resulting
drain current ID vs. drain voltage VDS for different gate bias
VTGS is shown in Fig. 5 with Pauli principle (solid lines)
and without (dashed lines). The Pauli principle does not have
a significant influence. The drain current ID vs. VTGS for
different drain bias VDS is shown in Fig. 6.

The distribution function in k-space is shown in Fig. 7
for a system homogeneous in y-direction at a low and a
high field applied in transport direction. It can be seen that
the occupation close to equilibrium is low. Far away from
equilibrium the maximum value of the occupation is lower and
the circle is blurred and shifted in transport direction. Thus,
at high bias conditions the device enters ballistic transport
which can not be simulated by the drift-diffusion model. Also
this indicates that the Pauli principle, which is included in the
scattering integral by the (1 − fν(y,k)) term, does not have
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Fig. 5. ID vs. VDS for different applied voltages VTGS considering the Pauli
principle (solid lines) and without (dashed lines).
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Fig. 6. ID vs. VTGS for different applied voltages VDS considering the Pauli
principle (solid lines) and without (dashed lines).

a great influence. The influence of the anisotropic transition
rate can be understood when considering the second term (out
scattering) of the single particle scattering integral in Eq. (2).
The rate S̄ considers the scattering of an electron from a state
k with the energy ε̃ pointing in transport direction (φ = 0)
into all other possible states k′ with angle θ for RP close
to equilibrium. In Fig. 8 the case of an absorption is shown.
The density of states is proportional to the kinetic energy and
thus a maximum occurs due to the Z(H)f(H) term in the
transformed scattering integral. The case of an emission is
shown in Fig. 9. The scattering rate starts to increase from the
phonon energy and again reaches a maximum. Thus, because
of this energy dependence the correct scattering rates can only
be obtained if the correct distribution function for the ballistic
transport can be computed. In both cases the back-scattering
is suppressed.

IV. CONCLUSION

We have presented the first deterministic solver for electrons
in a graphene device based on an expansion into Fourier har-
monics including the Pauli principle and anisotropic scattering
mechanisms. Our approach for the simulator is stable for
a large range of bias conditions. The results show a major
influence of RP on the mobility and indicate the importance
of a Boltzmann equation based model for transport.
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Fig. 7. Distribution function in k-space for a low and high field applied in
transport direction. The occupation is low in both cases indicating that the
Pauli principle does not have a great influence.
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Fig. 8. RP Scattering rate of an electron in transport direction into all other
possible states by absorption of a phonon.
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[6] Z. Kargar, D. Ruić, and C. Jungemann, “A Self-consistent Solution of
the Poisson, Schrödinger and Boltzmann Equations for GaAs Devices
by a Deterministic Solver,” in Simulation of Semiconductor Processes
and Devices (SISPAD), 2015 International Conference on, pp. 361–364,
IEEE, 2015.

[7] T. Ando, “Theory of electronic states and transport in carbon nanotubes,”
Journal of the Physical Society of Japan, vol. 74, no. 3, pp. 777–817,
2005.

[8] M. Bresciani, A. Paussa, P. Palestri, D. Esseni, and L. Selmi, “Low-
field mobility and high-field drift velocity in graphene nanoribbons and
graphene bilayers,” in Electron Devices Meeting (IEDM), 2010 IEEE
International, pp. 32.1.1–32.1.4, Dec 2010.

[9] C. Jungemann, A.-T. Pham, B. Meinerzhagen, C. Ringhofer, and
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