Investigation of Scattering Mechanism in Nano-Scale Double Gate In$_{0.53}$Ga$_{0.47}$As nMOSFETs by a Deterministic BTE Solver

Shaoyan Di1, Zhiyuan Lun1, Pengying Chang1, Lei Shen1, Kai Zhao1,3,*, Tiao Lu2, Gang Du1, Xiaoyan Liu1
1. Institute of Microelectronics, Peking University, 100871 Beijing, China
2. CAPT, HEDPS, IFSA Collaborative Innovation Center of MoE, LMAM & School of Mathematical Sciences, Peking University, Beijing, China.
3. School of Information and Communication, Beijing Information Science and Technology University, Beijing 100101, China
*Corresponding Author’s Email: k.zhao.chn@gmail.com

Abstract—we investigate the scattering mechanism in ultra-short double gate In$_{0.53}$Ga$_{0.47}$As nMOSFETs by deterministically solving Boltzmann transport equation (BTE). The intra-valley acoustic phonon scattering, optical phonon scattering, inter-valley optical scattering, polar optical scattering, and surface roughness (SR) scattering are considered. The impacts of scattering on the performance of device under high/low biases are compared. Results show that the ballistic ratio (I_{scat}/I_{ball}) decreases from 96.8% to 94.5% when the drain bias increases from 0.05V to 0.6V, which is mainly caused by the inter-valley scatterings.

Keywords—Boltzmann transport equation (BTE); InGaAs; double gate; scattering;

I. INTRODUCTION

III-V material is gradually becoming a candidate for the next generation to substitute Si devices [1] because of its small effective mass and consequently, much higher mobility [2, 3]. However, continuing scaling down, the channel length is only several times the mean free path. The electrons can only encounter a few times of scattering. On the other hand, increasing longitudinal electric field will bring in a variety of inter-valley scattering mechanisms because the higher valley can be populated by electrons with enough energy. These factors make it difficult to predict the drive current by the conventional low field mobility or the traditional ballistic approach [4]. In such a circumstance, the scattering properties of modern devices under high electric field have to be reassessed [5]. The BTE can describe carrier transport accurately. Consequently, it is suitable to have an insight into the scattering properties [6]. In this work, a deterministic multi-subband BTE solver [7-9] is used to evaluate the impact of scattering on the performance of III-V device under various drain biases.

II. SIMULATION METHOD AND DEVICE STRUCTURE

The deterministic time-dependent BTE solver is based on the positive and flux conservative (PFC) method [10]. The time splitting and dimensional splitting techniques [11] are employed during the iterations of coupled equations. In the solver, the Schrödinger-Poisson iteration is coupled with the BTE to consider the quantum confinement where a 2D Poisson equation and a group of 1D Schrödinger equations are solved self-consistently.

The intra-valley acoustic phonon scattering, optical phonon scattering, inter-valley optical scattering [12], polar optical scattering [13], and surface roughness scattering [14] are involved. The band and scattering parameters of In$_{0.53}$Ga$_{0.47}$As material are extracted from [15] and listed in Table I. The polar coordination is used in k space and the space is separated by 6 uniform angular grids and 150 non-uniform (uniform in magnitude of k) grids. The maximum energy is 150kBT. The lowest subband in Γ valley and 2 lowest subbands in 4
equivalent L valleys are considered in the simulation. The Pauli’s exclusion principle is also involved. A 10-nm In₀.₅₃Ga₀.₄₇As double gate nMOSFET (shown in Fig. 1) is simulated to investigate the impact of scattering. The structure parameters are listed in Table II.

III. RESULTS AND DISCUSSIONS

The drain current versus gate voltage under drain biases of 0.05V and 0.6V is shown in Fig. 2. The supply voltage is 0.6V according to the ITRS [16]. The off current is set to be 10⁻⁴ A/cm with drain voltage of 0.05V. The energy gap between the Γ and L valleys is smaller than the bulk material because of quantum confinement effect.

The energy gap between the Γ and L valley is 0.49eV which is much smaller than the bulk material (0.67eV) because the subband energy in Γ valley is lifted in a bigger magnitude by the quantum confinement effect due to its extremely small effective mass along the confinement direction. The electron density distribution along the channel at drain biases of 0.05V and 0.6V under different gate biases are depicted in Fig. 4.

The scattering rate versus energy is plotted in Fig. 5. The lowest energy is not 0 eV but 0.31 eV due to the effect of the quantum confinement. The scattering rate is about 10¹² s⁻¹ in low energy region. This is much lower than that of Si (above 10¹⁳ s⁻¹), which corresponds to the high mobility property of III-V material. However, when the kinetic energy is higher than 0.8 eV, the inter-valley scattering mechanisms show up and the scattering rate increases dramatically to 10¹⁴ s⁻¹ because of the increasing density of state brought about by the population of the higher L valleys. To investigate the effect of higher scattering rate, the scattering probabilities of every...
scattering mechanism along the channel under the drain bias of 0.05V and 0.6V are compared and plotted in Fig. 6. In low V_D case depicted in Fig. 6(a), the total scattering probability along the channel is lower than 1%. The most predominant scattering mechanism is surface roughness scattering while the effect of the inter-valley scattering can be ignored. When the drain bias is increased to 0.6 V, as shown in Fig. 6(b), the SR scattering mechanism still plays an important role, especially at the beginning of the channel. However, during the acceleration process, the rates of inter-valley scattering increase significantly and become the highest at the end of the channel.

Fig. 7 shows the occupancy rate of different subbands along the channel with V_D=0.6V. The effect of inter-valley scattering is very obvious near the end of the channel.

scattering mechanism along the channel under the drain bias of 0.05V and 0.6V are compared and plotted in Fig. 6. In low V_D case depicted in Fig. 6(a), the total scattering probability along the channel is lower than 1%. The most predominant scattering mechanism is surface roughness scattering while the effect of the inter-valley scattering can be ignored. When the drain bias is increased to 0.6 V, as shown in Fig. 6(b), the SR scattering mechanism still plays an important role, especially at the beginning of the channel. However, during the acceleration process, the rates of inter-valley scattering increase significantly and become the highest at the end of the channel.

more than 1/3 of the carriers are scattered to the L valleys from the Γ valley. This corresponds to the higher scattering rate under stronger drain bias shown in Fig. 6.

To evaluate the effect of the scattering on the drive current, according to the top-of-the-barrier model [17, 18], the injection velocity at the virtual source and the maximum velocity in the channel under different scattering mechanisms are extracted in Fig. 8. The intra-valley scattering has little effect on both the injection velocity and the maximum velocity because of their low scattering rates. However, when the inter-valley scatterings are considered, the maximum velocity in the high V_D bias case is dropped by more than 1/4 because the transport effective mass of the L valleys is much higher than that of Γ valley. Fig. 9 shows the contrast among the current under different scattering mechanisms. The inset is a probability distribution of the number of scattering that the electrons encounter in the channel.
encountered in the high V_D case. As a result, the effect of scattering on the drive current becomes obvious under a high longitudinal electric field. The ballistic ratio B (I_{scat}/I_{ball}) decreases from 96.8% to 94.5%. Nonetheless, the features of the quasi-ballistic transport still exist as shown in the energy distribution plotted in Fig. 10. At the source and the VS, the electrons distribute in equilibrium state. However, the shape of the distribution function is different in the drain as the fraction of the electrons populated in higher energy states increases significantly.

IV. CONCLUSION

The scattering details of an ultra-short In_{0.53}Ga_{0.47}As double gate nMOSFETs are investigated by a deterministic BTE solver. The results show that the scattering has little effect on the current at a low V_D bias but to some extent impedes the transport of the electrons under a high V_D. The dominant scattering mechanisms are surface roughness and the inter-valley scatterings. The ballistic ratio decreases from 96.8% to 94.5% when the drain bias increases from 0.05V to 0.6V.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China under Grant 61404005 and 61421005.

REFERENCES