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Abstract—For the deterministic MSBTE solver in 1D gas
systems, efficient methods including the accurate approach, the
decoupling of even-odd components of the distribution function
(fe–fo decouple), and the decoupling of subband index and
subband energy (RTA) have been implemented. For 3D MOSFET
simulations, compared to the accurate approach, the fe–fo

decouple approach helps to retain the accuracy of drain current
calculation, and, at the same time, significantly reduce the turn-
around-time as well as the memory usage. The hybrid scheme
combining the decouple and the RTA approach is a good option
to improve further the efficiency, while high accuracy of the drain
current calculation is remained.

I. INTRODUCTION

For nano-scaled device simulations, the deterministic multi-

subband BTE (MSBTE) approach, which involves the self-

consistent solution of the MSBTE, the Schrödinger equation

(SE), and the Poisson equation (PE), has been used in the

literatures [1]–[3]. The MSBTE approach has become even

more important for simulations of MOSFET at sub 20 nm

technology nodes, due to flexibilities for incorporating es-

sential effects, which influence the performance of such a

small device, such as the 2D quantization, the scatterings, the

screening, the non-parabolic (NMOS) or warped (PMOS) band

structure, and even the direct source-drain tunneling [4]. In this

paper, the decoupling approximations in order to improve the

efficiency of the MSBTE approach are focused. For a 1DEG

or 1DHG system for NMOSFETs or PMOSFETs, respectively,

we implement for the MSBTE solver (i) the accurate approach,

and the approximated approaches including (ii) the decoupling

of even-odd components of the distribution function (fe–fo

decouple), and (iii) the decoupling of subband index and

subband energy, i.e. the relaxation time approximation (RTA).

We also implement (iv) the hybrid scheme, where the accurate

(i) or decoupling (ii) approach is applied for the main channel

region and the RTA approach (iii) is applied for the remaining

regions of the device. We examine the efficiency and the

accuracy of the 4 methods. In section II, the method is

described. Results are shown in section III. Finally, conclusion

are drawn in section IV.

II. METHOD

The H-transformation is used for the discretization of the

MSBTE [2]. Using the H-transformation the free-streaming

operator of the MSBTE in 1D ~k-space can be derived to take

the following forms:

∂

∂x

{

{vxZ}ν(x, H)fν
o (x, H)

}

, for fν
e (x, H) (1)

∂

∂x

{

{vxZ}ν(x, H)fν
e (x, H)

}

, for fν
o (x, H) (2)

where fe and fo are the even and odd components of the

distribution function f (fe(k) = (f(k) + f(−k))/2 and

fo(k) = (f(k)− f(−k))/2). In (1) and (2), x is the transport

direction, ν is the subband index, v is the group velocity, Z
the generalized DOS for a single spin direction, H is the

Hamilton (i.e. the total energy). Note that there is no same

parity coupling in the free-streaming operator because fe only

couples to fo in (2), and fo only couples to fe in (1).

However, the distribution function parity coupling within

the scattering integral is much more complicated depending

on the type of scattering mechanisms whether it is anisotropic

or isotropic. In general, the following coupling is possible in

the anisotropic scattering integral: the inverse parity coupling

(fν′

o (x, H ′) ↔ fν
e (x, H), fν′

e (x, H ′) ↔ fν
o (x, H)), and the

same parity coupling (fν′

e (x, H ′)↔ fν
e (x, H), fν′

o (x, H ′)↔
fν

o (x, H)). Here, unprimed and primed notations are associ-

ated with the initial and final states, respectively.

For the special case of isotropic scattering the inverse parity

coupling is canceled out, and only the same parity coupling

remains. However, there is still coupling between different

energies H ′, H where H ′ 6= H due to the in-elasticity.

For the fo equation, if the value of fe from the previous

iteration is used for the in-elastic scattering term, then the

scattering integral can be expressed in terms of a relaxation

time τν(x, H).

Ŝiso.(fo) = −
Zν(x, H)fν

o (x, H)

τν(x, H)
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Putting the free-streaming (2) and scattering integral (3) to-

gether, we obtain a closed form for fo as follows:

fν
o (x, H) = −

τν(x, H)

Zν(x, H)

∂

∂x

{

{vxZ}ν(x, H)fν
e (x, H)

}

(4)

Substituting (4) into (1), and putting the resultant free

streaming operator together with the scattering integral, we

obtain the final equation for fe:

∂

∂x

{

{vxZ}ν
τν

Zν

∂

∂x

{

{vxZ}νfν
e

}}

= Ŝiso.(fe) (5)

It can be seen that the free streaming operator in (5) now

contains only fe because fo is decoupled. Moreover, within

the isotropic scattering integral Ŝiso.(fe) in (5), the fo is fully

decoupled from fe due to the isotropicity approximation. Note

that, there is still energy coupling in (5) because the elasticity

assumption is not used within Ŝiso.(fe). Therefore, we only

need to solve (5) to obtain fe, and use (4) to determine fo.

This approach is called fe–fo decouple in order to distinguish

with the accurate approach (fe–fo couple) where the full

scattering without any approximation and simplification for

the scattering mechanisms is considered. The advantage of the

fe–fo decouple approach is that the number of unknowns is

reduced by a factor of 2 compared to the accurate approach.

Therefore, the decouple approach consumes less CPU time and

less memory. If the fν′

e (x, H ′)-term within the Siso.(f
ν
e (x, H))

is calculated with fν′

e (x, H ′) from the previous iteration and

the equilibrium feq is introduced, then Siso.(f
ν
e (x, H)) takes

the same form as (3), where fo ← fe− feq. Consequently, the
energy coupling as well as subband coupling vanishes in (5).

This results in the RTA MSBTE. For the RTA, an additional

equation for subband quasi-Fermi energy associated with feq
needs to be solved in order to conserve the number of particle

within the subband [5].

In order to retain the accuracy, and, at the same time,

improve the efficiency, a hybrid scheme is considered. Within

the hybrid scheme, the accurate or the fe − fo decouple

approach is applied for the main channel region and the RTA

approach is applied for the remaining regions of the device.

In order to correct the effects of anisotropic scattering,

the scattering rate is multiplied with a normalized correction

factor (e.g. [6]). Scatterings due to phonons, SR, and ionized

impurity (Coulomb) are included, where the anisotropicity

of SR and Coulomb scatterings is accounted for. Rigorous

Lindhard screening treatment based on tensorial dielectric

function is used. The MSBTE is solved self-consistently with

the EMA (for NMOSFET) or the 6× 6 ~k · ~p (for PMOSFET)

SE, and the PE using the Gummel liked iteration scheme.

III. RESULTS

For comparison, rectangular 5× 7 nm GAA Si NMOSFET

and PMOSFET is simulated. Surface orientation of the 5 nm

wall is (110) direction and channel orientation is <110>
direction. Gate length is Lg = 13 nm. Source, drain extension

is Ls = Ld = 10 nm. Effective oxide thickness is EOT = 0.8

TABLE I
NORMALIZED TAT AND MEMORY USAGE FOR |VD| = 0.7 V

couple decouple RTA
NMOSFET TAT [au] 7.67 2.12 1.0

RAM [au] 3.4 2.8 1.0
PMOSFET TAT [au] 0.88 0.8 1.0

RAM [au] 1.69 1.32 1.0

nm. 2 GPa tensile (NMOSFET) or compressive (PMOSFET)

uniaxial stress is applied along the transport direction.

Fig. 1 shows ID-VG curves for linear and high-field trans-

port regimes. The RTA approach causes up to 20% error for

ID compared to the accurate (couple) method, while the error

is only 2% for the decouple method case.

Normalized turn-around-time (TAT) and peak memory us-

age is shown in Tab. I for |VD| = 0.7 V. For NMOSFET,

the decouple approach helps to reduce the TAT significantly

by about 3.6 X compared to the accurate approach, and the

TAT enhancement factor for the RTA approach vs the accurate

approach is about 7.7 X. The peak memory usage for the

decouple and RTA approach is reduced by a factor of 1.2 X

and 3.4 X, respectively, compared to the couple approach case.

For PMOSFET, the computational efficiency gain is not

much for the decoupling approximations due to the fact that

the 6 × 6 ~k · ~p SE eigen solver consumes much CPU time

to compute the eigen states for many k-point in the 1D

k-space. Additionally, the number of unknowns of MSBTE

for PMOSFET is smaller than the one for NMOSFET case

because we need to solve fe, fo for 3 degenerate ladders of

X-valleys of the conduction band, while for holes we need

to solve fe, fo for only Γ-valley. Due to this reduction in the

number of fe, fo unknowns, for PMOSFET, the reduction of

peak memory usage for decoupling approximation approaches

is also smaller than the one for NMOSFET case, as shown in

Tab. I.

Electron inversion charge (Ninv) and average electron drift

velocity (vdrift) is shown in Fig. 2 for NMOSFET for VD = 50

mV (top) and VD = 0.7 V (bottom) @ VG = 0.8 V. For the

linear transport regime, the decoupling approximations capture

well the details of transport like Ninv and vdrift calculated

based on the accurate approach. For the high-field transport

regime, only the decouple approach can capture the Ninv and

vdrift from the accurate approach, while the RTA approach

strongly overestimates vdrift.

Phase space diagram of fo(x,±k) for first subband of the

most occupation ladder is shown in Fig. 3 for NMOSFET @

VD = 0.7 V, VG = 0.8 V. The decouple approach reproduces

well the details of fo(x,±k) calculated based on the accurate

approach, while the RTA approach strongly overestimates the

accurate result of |fo(x,±k)|.

For the hybrid scheme, the decouple approach is applied

for the main channel region and the RTA for the remain-

ing regions. The decouple approach region, which covers

the channel region, is ranging from −(Lg/2 + Lmargin) to

(Lg/2 + Lmargin), where Lmargin is the marginal length. The
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Fig. 1. ID-VG curves for NMOSFET (a, b) and PMOSFET (c, d) for |VD|
= 50 mV (a, c) and |VD| = 0.7 V (b, d).

Fig. 2. Electron inversion charge and average electron drift velocity for
NMOSFET. VD = 50 mV (top) and 0.7 V (bottom).

Fig. 3. fo(x,±k) for NMOSFET. @VD = 0.7 V, VG = 0.8 V.
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Fig. 4. ID-VG curves based on decouple/RTA hybrid 1 (Lmargin = Ls/4)
and 2 (Lmargin = Ls/2) scheme vs decouple scheme (Lmargin = Ls) for
NMOSFET for VD = 0.7 V.

TABLE II
NORMALIZED TAT AND MEMORY USAGE OF HYBRID SCHEME FOR VD =

0.7 V.

decouple/RTA
hybrid 2

(Lmargin = Ls/2)

decouple/RTA
hybrid 1

(Lmargin = Ls/4)

decouple
(Lmargin = Ls)

TAT [au] 0.8 0.9 1.0
RAM [au] 0.6 0.7 1.0

source, drain extension is now extended to Ls = Ld = 20
nm. We compare the 2 cases: Lmargin = Ls/4 = 5 nm and

Lmargin = Ls/2 = 10 nm with the case where the decouple

approach is applied for the entire device (Lmargin = Ls).

Fig. 4 shows ID-VG curves for NMOSFET at high VD = 0.7

V for 3 cases of Lmargin. It can be seen that the hybrid scheme

(Lmargin < Ls) causes a small error of 3-4% compared to the

case where the decouple approach is applied for the entire

device (Lmargin = Ls).

As shown in table II, the hybrid scheme helps to reduce the

TAT up to 20% and it also helps to reduce the memory usage

up to 40% compared to the decouple approach for the entire

device.

Ninv and vdrift is shown in Fig. 5 for VD = 0.7 V @ VG

= 0.8 V. For such the high-field transport regime, the hybrid

scheme can still capture the Ninv and vdrift from the decouple

approach in the source, drain, and even in the channel near the

source. However, the difference is larger, once the electrons are

accelerated in the middle of channel. The difference is largest,

when the electrons get hottest near the drain/channel interface.

The main reason for this is that the RTA approximation in

the drain side underestimates the second order effect on the

distribution function, while the electrons are still not fully

thermalized.

Fig. 5. Electron inversion charge and average electron drift velocity based on
decouple/RTA hybrid 1 (Lmargin = Ls/4) and 2 (Lmargin = Ls/2) scheme
vs decouple scheme (Lmargin = Ls) for NMOSFET for VD = 0.7 V, VG =
0.8 V.

IV. CONCLUSION

For 3D MOSFET device simulations, the accurate approach

together with decoupling approximations including the de-

coupling of even-odd components of the distribution function

(fe–fo decouple), and the decoupling of subband index and

subband energy (RTA) has been implemented for the deter-

ministic MSBTE solver in 1D gas systems. Compared to the

accurate approach, the fe–fo decouple approach helps to retain

the accuracy of drain current calculation, and, at the same

time, significantly reduce the turn-around-time as well as the

memory usage. The hybrid scheme combining the decouple

and the RTA approach is a good option to improve further the

efficiency, while high accuracy of the drain current calculation

is remained.
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