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Abstract—We model and simulate the resonant tunneling and 
I-V characteristics of Interlayer Tunneling Field-Effect 
Transistors (ITFETs) based on transition metal dichalcogenide 
monolayers, MoS2 layers here, using quantum transport 
simulations with a full-band model. Gate-controllable resonant 
peaks are demonstrated and the short channel effects on resonance 
broadening are studied.  
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I.  INTRODUCTION 
The Interlayer Tunneling Field-Effect Transistor (ITFET) 

(originally referred to as a “Double Electron Layer Tunneling 
Transistor” in [1]) is an attractive, non-conventional device 
intended for high-speed electronic applications. Based on 
conduction band (CB)-to-CB or valence band (VB)-to-VB 
resonant tunneling [2] between two two-dimensional (2D) 
electron gases separated by a tunnel barrier, ITFETs show gate-
tunable negative differential resistance (NDR) characteristics 
[3,4], which can be applied to digital logic circuits [5]. 

Adjacent semiconductor quantum wells were the initial host 
proposed in [1] to achieve resonant tunneling for ITFETs. 
Recently, such resonant tunneling between the natural near-
perfect 2D graphene layers has been studied both in theory and 
experiments [6-8]. Furthermore, quasi-2D monolayers of the 
transition metal dichalcogenides (TMDs) composed of a layer of 
transition metal atoms (Mo, W, etc.) sandwiched by two layers 
of chalcogen atoms (S, Se, etc.) [9], also provide a promising 
platform for ITFETs. Use of TMDs may reduce short-channel 
resonance broadening associated Heisenberg uncertainty. 

Due to the complex band structures, the modeling of TMD 
materials in electronic devices commonly employs simple  
effective-mass-based parabolic band approximations [10], 
which neglects their nonparabolicity and higher-lying energy 
bands. In this paper, we apply a more accurate multi-band model 
for, for specificity here, MoS2 monolayers to study the resonant 
tunneling effect and I-V characteristics of short channel ITFETs 
based on these less explored materials. 

II. SIMULATION METHOD 

A. Device concept 
Fig. 1(a) shows the structure of a MoS2-based ITFET 

schematically, where two MoS2 monolayers are partially 

overlapped with a tunnel barrier layer between. The left end of 
the top (T) MoS2 layer and the right end of the bottom (B) MoS2 
layer extending beyond the overlap region serve as the electrical 
leads and are separately biased. In this paper, the bottom right or 
“source” (S) lead is always grounded and the top left or “drain” 
(D) lead is biased with voltage 𝑉𝑉DS, which creates a Fermi level 
difference between two leads EF,D−EF,S= −e𝑉𝑉DS where e is the 
magnitude of the electron charge.  Electrons in the overlap 
region are controlled by a back gate with voltage 𝑉𝑉BG and a top 
gate with voltage 𝑉𝑉TG . It is possible for electrons or holes to 
tunnel from one layer to the other in this region, forming an 
interlayer tunneling current. The magnitude of the tunneling 
current depends on the alignment of the band structures in two 
layers and the Fermi level difference between them, as 
illustrated by Fig. 1(b). If carrier energies and in-plane crystal 
momenta are well defined, then when the band structures are 
aligned (when the difference Δφ between the electrostatic 
potentials in the top layer (𝜑𝜑T ) and the bottom layer (𝜑𝜑B ) 
becomes zero) a non-zero VDS can lead to a large resonant 
interlayer tunneling current, but when Δφ is nonzero, energy and 
momentum cannot be conserved simultaneously and the current 
would be eliminated.  However, in practice weaker but nonzero 
currents still can flow off-resonance due to energy or momentum 
uncertainty in the tunneling process, such as due to scattering 
and, as to be considered here, short channel effects. 

This work was supported by the Semiconductor Research Corporation’s 
Nanoelectronics Research Initiative (SRC-NRI) via the South West Academy 
of Nanoelectronics (SWAN). Supercomputing resources were provided by the 
Texas Advanced Computing Center (TACC). 

 

 

    
Fig. 1. (a) Schematic structure and biasing scheme of a MoS2-based ITFET. 
(b) Band digrams illustrating the operation of ITFETs in (left panel) and out 
of (right panel) resonance. Δφ is the electrostic potential difference between 
the layers, which is a function of souce (S), drain (D), and top (T) and bottom 
(B) gate voltages. 
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B. Electrostics modeling 
Rigorously, 𝜑𝜑T and 𝜑𝜑B are functions of position along the 

tunneling region and should be calculated self-consistently using 
the Poisson’s equation along with the transport calculations 
discussed in the upcoming Section II-C. For the purpose of 
capturing the underlying principles of ITFETs here, we 
approximate 𝜑𝜑T and 𝜑𝜑B, as well as the Fermi levels 𝐸𝐸F,T = 𝐸𝐸F,D 
and 𝐸𝐸F,B = 𝐸𝐸F,S , as uniform within the respective layers. 
Therefore, the quasi-one-dimensional capacitive relations give 
𝑒𝑒 �𝑝𝑝T − 𝑛𝑛T + 𝑁𝑁 D,T

(+) −𝑁𝑁A,T
(−)� = 𝐶𝐶G,T∆𝜑𝜑OX,T + 𝐶𝐶I(𝜑𝜑T − 𝜑𝜑B) 

𝑒𝑒 �𝑝𝑝B − 𝑛𝑛B + 𝑁𝑁D,B
(+) − 𝑁𝑁A,B

(−)� = 𝐶𝐶G,B∆𝜑𝜑OX,B + 𝐶𝐶I(𝜑𝜑B − 𝜑𝜑T) 
(1) 

where 𝑛𝑛T  and 𝑝𝑝T  ( 𝑛𝑛B  and 𝑝𝑝B ) are the electron and hole 
concentrations as functions of 𝜑𝜑T  (𝜑𝜑B) and the Fermi level 𝐸𝐸F,T 
(𝐸𝐸F,B) in the top (bottom) layer; 𝑁𝑁D

(+) and 𝑁𝑁A
(−) are the similarly 

defined ionized donor or acceptor concentrations; 𝐶𝐶G,T (𝐶𝐶G,B) is 
the top (bottom) gate oxide capacitance; 𝐶𝐶I is the tunnel barrier 
capacitance; Δ𝜑𝜑OX,T (Δ𝜑𝜑OX,B) is the electrostatic potential drop 
across the top (bottom) gate oxide determined by 𝜑𝜑T (𝜑𝜑B), gate 
voltage 𝑉𝑉TG  (𝑉𝑉BG ) and the gate material work function and 
electron affinity of the MoS2 monolayer [10]. Thus, 𝜑𝜑T or 𝜑𝜑B 
are ultimately controlled by all four-terminal voltages. 

Illustratively, here we use a capacitance equivalent to that of 
1 nm SiO2 for 𝐶𝐶I, 𝐶𝐶G,T and 𝐶𝐶G,B, ideal undoped channels, 4.3 eV 
effective electron affinity for MoS2, and 4.1 eV work function 
for both gates. Under these conditions, the CB edge in each layer 
is located near the Fermi level under small voltages.   

C. Tansport simulation approach 
 The bulk crystal structure of a MoS2 monolayer has a 
hexagonal primitive lattice. In order to model the transport 
properties, we use a rectangular unit cell in the x-y plane with 
twice the area of a primitive unit cell, as shown in Fig. 2(a). The 
lattice vectors of this unit cell arrangement are ɑx are ɑy . We take 
the direction of current flow to be along the x axis and number 
the unit cells as shown in Fig. (b). The n=1 and n=N cells are the 
left and right boundaries of the tunneling region, respectively. 

To describe the electronic structure of the MoS2 layers, here 
as in [11] we use a tight-binding model with a basis set of 
maximally-localized Wannier functions (MLWFs) [12] |𝑛𝑛𝑛𝑛𝑛𝑛〉  
with hopping matrices (𝐇𝐇𝑛𝑛𝑛𝑛,𝑛𝑛′𝑛𝑛′

(hop) )𝛼𝛼𝛼𝛼′ = ⟨𝑛𝑛𝑛𝑛𝑛𝑛|𝐇𝐇|𝑛𝑛′𝑛𝑛′𝑛𝑛′⟩ 
calculated from density functional theory (DFT) using OpenMX 
[13]. Here |𝑛𝑛𝑛𝑛𝑛𝑛〉 denotes the 𝑛𝑛th basis function in the unit cell 
denoted by 𝑛𝑛ɑx  + 𝑛𝑛ɑy. In this study we use the Mo atom’s 𝑑𝑑𝑧𝑧2, 
𝑑𝑑𝑥𝑥𝑥𝑥 and 𝑑𝑑𝑥𝑥2−𝑥𝑥2  orbitals, including separate spin up and down 
orbitals to allow for spin-splitting, from which to construct the 
MLWFs and obtain 𝑀𝑀 = 12  basis functions in a bilayer 
rectangular unit cell. The electron states |𝜓𝜓〉 in this system can 
be written as a linear combination of all oribtals |𝑛𝑛𝑛𝑛𝑛𝑛〉 with 
coefficients 𝜓𝜓𝑛𝑛𝑛𝑛𝛼𝛼 . We write 𝛙𝛙𝑛𝑛𝑛𝑛 = (𝜓𝜓𝑛𝑛𝑛𝑛1,⋯ ,𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛)T  to 
denote the tight-binding wavefunction within each cell.  

We treat our device as sufficiently wide so that translation 
invariance in y direction is retained and Bloch’s theorem can be 
applied. For the state with wave-vector 𝑘𝑘𝑥𝑥  in the y direction, 
𝛙𝛙𝑛𝑛𝑛𝑛(𝑘𝑘𝑥𝑥) = 𝑒𝑒𝑖𝑖𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎𝑦𝑦𝛙𝛙𝑛𝑛0(𝑘𝑘𝑥𝑥), we write 𝛙𝛙𝑛𝑛(𝑘𝑘𝑥𝑥)=𝛙𝛙𝑛𝑛0(𝑘𝑘𝑥𝑥) and 
𝐇𝐇𝑛𝑛𝑛𝑛′

(hop)(𝑘𝑘𝑥𝑥) = ∑ 𝑒𝑒𝑖𝑖𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎𝑦𝑦𝐇𝐇𝑛𝑛0,𝑛𝑛′𝑛𝑛
(hop)

𝑛𝑛 . For the following analysis, 

 
𝑘𝑘𝑥𝑥 is included implicitly in 𝛙𝛙𝑛𝑛, 𝐇𝐇𝑛𝑛𝑛𝑛′

(hop) and related terms. 

      Similar to the work of [11], the Hamiltonian of this system 
has the form 

𝐇𝐇𝑛𝑛𝑛𝑛′ = �
𝐇𝐇𝑛𝑛𝑛𝑛′,T

(hop)
 
− 𝑒𝑒𝜑𝜑T𝐈𝐈 𝐇𝐇n,T;𝑛𝑛′,B

𝐇𝐇n,B;𝑛𝑛′,T 𝐇𝐇𝑛𝑛𝑛𝑛′,B
(hop) − 𝑒𝑒𝜑𝜑B𝐈𝐈

�, (2) 

where 𝐈𝐈 is the unitary matrix; 𝐇𝐇𝑛𝑛𝑛𝑛′,T
(hop) and 𝐇𝐇𝑛𝑛𝑛𝑛′,B

(hop) are the intra-
layer tight-binding hopping matrices of each MoS2 monolayer 
obtained from the DFT calculations; 𝐇𝐇n,T;𝑛𝑛′,B  and 𝐇𝐇n,B;𝑛𝑛′,T 
describe the interlayer interactions. In this study we simply take 
𝐇𝐇n,T;𝑛𝑛′,B and 𝐇𝐇n,B;𝑛𝑛′,T equal to 𝑡𝑡𝐈𝐈 when 1 < n = 𝑛𝑛′ < N and equal 
to 0 otherwise, such that interlayer hopping occurs only between 
the same basis functions in nearest interlayer cells in the 
tunneling region. We then use the scalar parameter 𝑡𝑡 to describe 
the interlayer tunnel strength. In further studies, these matrices 
can be replaced by more accurate hopping matrices through 
specific interlayer barriers from DFT calculations, or even by 
matrices including non-local interactions, e.g., the Fock 
exchange interaction as in [14]. 

 In the transport direction, we assume that the leads are semi-
infinite and perfectly absorbing. Thus, for each energy E and 
wave-vector 𝑘𝑘𝑥𝑥 , the wavefunction of the ITFET in the leads (n 
≤ 1 or n ≥ N) can be written as 𝛙𝛙𝑛𝑛 = 𝛙𝛙𝑛𝑛

+ + 𝛙𝛙𝑛𝑛
−, where the plus 

(minus) signed term indicates the components propagating or 
evanescing in the positive (negative) x direction. In turn, 𝛙𝛙𝑛𝑛

+ 
(𝛙𝛙𝑛𝑛

− ) can be written as a linear combination of the multiple 
independent right (left) propagating or evanescing modes of 
these leads,  𝛟𝛟𝑖𝑖

+ (𝛟𝛟𝑖𝑖
−), with complex phase factors 𝜆𝜆𝑖𝑖+ (𝜆𝜆𝑖𝑖−), 

𝛙𝛙𝑛𝑛
± = ∑ 𝑐𝑐𝑖𝑖

±(𝜆𝜆𝑖𝑖
±)𝑛𝑛𝛟𝛟𝑖𝑖

±
𝑖𝑖 . (3) 

All of these lead modes can be obtained by solving the quadratic 
eigenvalue equations, 

𝐇𝐇10𝛟𝛟 + 𝜆𝜆𝐇𝐇00𝛟𝛟 + 𝜆𝜆2𝐇𝐇01𝛟𝛟 = 𝜆𝜆𝐸𝐸𝛟𝛟, (4-a) 
𝐇𝐇𝑁𝑁(𝑁𝑁+1)𝛟𝛟 + 𝜆𝜆𝐇𝐇(𝑁𝑁+1)(𝑁𝑁+1)𝛟𝛟 + 𝜆𝜆2𝐇𝐇(𝑁𝑁+1)(𝑁𝑁+2)𝛟𝛟 = 𝜆𝜆𝐸𝐸𝛟𝛟, (4-b) 

considering nearest neighbor rectangular unit cells in the x 
direction (four or more nearest neighbor atomic planes) where 
(4-a) is for the D lead and (4-b) for the S lead. Each equation, 

 

 
Fig. 2. Top (a) and side (b) views of the crystal structure of the MoS2 
monolayers in Fig. 1. We used a rectangular unit cell in the x-y plane and 
number the cells in the x direction. Tunneling occurs within the the 
tunneling region from n=2 cell to n=N-1 cell.  

(a) 

(b) 
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(4-a) and (4-b), has 2M non-zero solutions, where, again, M is 
the number of basis functions in a unit cell. M of these solutions, 
𝛟𝛟𝑖𝑖
+ and 𝜆𝜆𝑖𝑖+, are the modes that either propagate (|𝜆𝜆𝑖𝑖+| = 1) or 

evanesce (|𝜆𝜆𝑖𝑖+| < 1) in the positive x direction, with only the 
propagating modes carrying current. The remaining M solutions, 
𝛟𝛟𝑖𝑖
− and 𝜆𝜆𝑖𝑖−, are the modes that either propagate (|𝜆𝜆𝑖𝑖−| = 1) or 

evanesce (|𝜆𝜆𝑖𝑖−| > 1) in the negative x direction.  

      Use of (3) and (4) allows us to relate the wave function 
components of an electron state of the ITFET system at two 
adjacent cells in the leads, e.g.,  𝛙𝛙1

+ and 𝛙𝛙0
+ (𝛙𝛙1

− and 𝛙𝛙0
−), by 

𝛙𝛙1
±  = 𝐓𝐓D±𝛙𝛙0

± = 𝐐𝐐±𝐏𝐏±𝐐𝐐±
−𝟏𝟏𝛙𝛙0

±, (5) 
where  
𝐐𝐐± = �𝛟𝛟1

±,𝛟𝛟2
±,⋯ ,𝛟𝛟𝑛𝑛

± �,  𝐏𝐏± = diag�𝜆𝜆1
±, 𝜆𝜆2

±,⋯ , 𝜆𝜆𝑛𝑛
± � (6) 

with 𝛟𝛟𝑖𝑖
± and 𝜆𝜆𝑖𝑖

± solved from (4-a). Similar relations can be 
obtained between 𝛙𝛙𝑁𝑁+1

±  and 𝛙𝛙𝑁𝑁
± via 𝐓𝐓S± constructed using the 

solutions from (4-b). 

      With these relations, we can use the approach as in [14] to 
set up a transport equation for the channel region 

(𝐸𝐸𝐈𝐈 − 𝐇𝐇 − 𝚺𝚺)𝚿𝚿 = 𝐒𝐒, (7) 
where 𝐇𝐇 = �𝐇𝐇𝑖𝑖𝑖𝑖�𝑁𝑁𝑛𝑛×𝑁𝑁𝑛𝑛

, 𝚺𝚺 = �𝚺𝚺𝑖𝑖𝑖𝑖�𝑁𝑁𝑛𝑛×𝑁𝑁𝑛𝑛
, 𝚿𝚿 = [𝛙𝛙𝑖𝑖]𝑁𝑁𝑛𝑛×1 , 

𝐒𝐒 = [𝐬𝐬𝑖𝑖]𝑁𝑁𝑛𝑛×1  with 𝑖𝑖, 𝑗𝑗 = 1,⋯ ,𝑁𝑁 , 𝚺𝚺11 = 𝐇𝐇10𝐓𝐓D−−1 , 𝐬𝐬1 =
𝐇𝐇10(𝐈𝐈 − 𝐓𝐓D−−1𝐓𝐓D+)𝛙𝛙0

+ , 𝚺𝚺𝑁𝑁𝑁𝑁 = 𝐇𝐇𝑁𝑁(𝑁𝑁+1)𝐓𝐓S+ ,  𝐬𝐬𝑁𝑁 = 𝐇𝐇𝑁𝑁(𝑁𝑁+1)(𝐈𝐈 −
𝐓𝐓S+𝐓𝐓S−−1)𝛙𝛙𝑁𝑁+1

− , and all remaining 𝚺𝚺𝑖𝑖,𝑖𝑖 and 𝐬𝐬𝑖𝑖 are zero. 

      For any given energy 𝐸𝐸 and 𝑘𝑘𝑥𝑥 we first solve (4) to obtain 
all transport modes in each lead. Each propagating mode 𝛟𝛟𝑖𝑖

± 
with incident propagation direction injects into the channels, 
producing an associated 𝛙𝛙0

(+)  or 𝛙𝛙𝑁𝑁+1
(−)  as required for the 

source term S in (7). With S the ITFET state 𝚿𝚿 for that incident 
lead mode be obtained from (7). The tight-binding probability 
current flow carried by this ITFET state 𝚿𝚿 is [15] 

𝑗𝑗𝑒𝑒,D
± = 2 Im�𝛙𝛙1

±†𝐇𝐇10𝛙𝛙0
±� ℏ⁄  

(10) 
  𝑗𝑗𝑒𝑒,S

± = 2 Im�𝛙𝛙𝑁𝑁+1
±† 𝐇𝐇(𝑁𝑁+1)𝑁𝑁𝛙𝛙𝑁𝑁

±� ℏ⁄  
The total probability current flow is thus 

𝑗𝑗𝑒𝑒 = 𝑗𝑗𝑒𝑒,D =  𝑗𝑗𝑒𝑒,S = 𝑗𝑗𝑒𝑒,D(S)
+ + 𝑗𝑗𝑒𝑒,D(S)

−  (11) 
The transmission coefficient 𝑇𝑇 for the state injected into the D 
(S) lead can be defined as 

𝑇𝑇D(S) = 𝑗𝑗𝑒𝑒,S(D)
+(−) 𝑗𝑗𝑒𝑒,D(S)

+(−)�  (12) 

      Note that for any injection state labeled by energy 𝐸𝐸, wave 
vector 𝑘𝑘𝑥𝑥, injection lead 𝑖𝑖, and index 𝑛𝑛 from solving (4), (7) can 
be set up and solved independently. Therefore parallelized 
computing is readily used to reduce computing time. 

      Finally, the total macroscopic charge current is 
     𝑗𝑗DS = −𝑒𝑒∑ 𝑓𝑓�𝐸𝐸 − 𝐸𝐸F,𝑖𝑖�𝑗𝑗𝑒𝑒(𝐸𝐸, 𝑘𝑘𝑥𝑥, 𝑖𝑖,𝑛𝑛)𝐸𝐸,𝑘𝑘𝑦𝑦,𝑖𝑖,𝑛𝑛  (13) 

where f(E) is the Fermi distribution function. 

III. RESULTS 
Fig. 3 shows the transmission coefficient T of a randomly-

chosen injection state near the CB edge as a function of the 
interlayer potential difference Δφ, with different channel lengths 
L and different hopping strengths t. As expected, this state has a 
strong transmission peak near Δφ=0 where resonant tunneling

 
occurs. With a shorter channel, this peak is weakened and 
broadened, which is undesired and needs to be suppressed for 
the logic gates based on ITFETs [1]. This broadening is due to 
Heisenberg momentum-position uncertainty for the finite 
channel length, translated to energy uncertainty via the charge 
carrier incident group velocities 𝑣𝑣 = 𝜕𝜕𝐸𝐸 ℏ𝜕𝜕𝑘𝑘⁄ . Thus, slower 
carriers produce less broadening, turning the heavy mass carriers 
in TMDs into an advantage. A moderate interlayer hopping 
strength doesn’t affect the shape of the transmission curves. 
However, a large t, e.g. 10 meV in Fig. 3(b), leads to the peak 
transmission probability saturating toward unity near Δφ=0. 
This saturation also effectively broadens the resonant tunneling 
by increasing the relative importance of the off-resonance tails 
which are not in saturation. Therefore, the tunneling barrier 
should be designed to allow sufficient tunneling current without 
excessively broadening the resonant tunneling.  

The I-V curves in Fig. 5(a) present gate-controllable 
resonant tunneling in ITFETs for non-saturating and in 
saturating current. With the back gate grounded (VBG=0), the 
channel potentials in two layers shift with respect to each other 
under different VTG, which, in turn, leads to resonant tunneling 
at different VDS providing the mechanism of gate control. With 
our simulation parameters, a 0.2 V VTG is sufficient to shift the 
resonant VDS by only 25 mV, but this change still should be 
sufficient for switching in bi-stable logic gates in [1] in the 
absence of current saturation. 

The degree of off-resonance current in the I-V tails at 
positive VDS and the asymmetries with respect to both VTG and 
VDS in Fig. 5(a) are associated with the filling of the channel 
states consistent with the density of states. This behavior can be 
effectively described via a quantum capacitance CQ connected in 
series between the lead and channel [16]. As illustrated in Fig. 
5(b), when a positive (negative) VTG is applied, the Fermi level 

 

 
Fig. 3. Transmission probability of a single injection state as a function of 
channel potential difference with (a) different channel lengths and (b) 
different interlayer hopping strengths. Note saturation of the tunneling 
probability to unity for strong interlayer coupling in (b). In (a) the hopping 
parameter is t = 1 meV. In (b) the channel length is L = 15 nm. 

(a) 

(b) 

Simulation of Semiconductor Processes and Devices 2016
Edited by E. Bär, J. Lorenz, and P. Pichler

91



shifts to a higher (lower) CQ regime and, thus, the drain has better 
(worse) control over the channel, while the gate has less (more) 
control. Note that the 300K thermal carrier distribution 
smoothes out the onset of capacitance with band filling, and also 
couples to the non-parabolic higher energy band structure 
increasing the CQ. Because the location of the Fermi level in Fig. 
5(b) are determined by the MoS2 electron affinity, work function 
of the gates, and doping which is not discussed here, careful 
engineering of these parameters will be needed to maximize gate 
control. 

IV. CONCLUSION 
We demonstrate the theoretical feasibility of achieving gate-

controllable resonant tunneling of an ITFET based on bilayer 
MoS2 system. Tradeoffs of improving the ITFET performances 
are addressed. A sharp resonant peak is desired for ITFET-based 
logic gates. However, device scaling broadens the peak. A larger 
interlayer tunneling strength required for a sufficient current also 
broadens the resonance peak. Low resistivity is also desired for 
the MoS2 layers to carry sufficient current, which requires higher 
carrier concentrations. However, as illustrated in Fig. 5, this will 
lead to a high CQ, which weakens the gate control over the 
resonance.    

In terms of the simulation method, we incorporated a multi-
band model for MoS2 monolayers into quantum transport 
simulations. Some of the underlying physics, e.g. the effect of 
quantum capacitances, can be addressed here more accurately 
than by a parabolic model. Furthermore, with the inclusion of 
non-local exchange effects, this method should allow 
consideration of current flow in the presence of possible 
interlayer exciton formation [14] in perhaps more compatible 

TMD systems, for exotic devices applications such as the 
Bilayer pseudoSpin Field-Effect Transistor (BiSFET) in [17]. 
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Fig. 5. (a) I-V characteristics of ITFETs at room temperature under different VTG with t = 1 meV (top panel) and t = 10 meV (bottom panel). (b) Channel potential 
difference Δφ as a function of VDS (top panel) and electron concentration n and quantum capacitance CQ as a function of Fermi level EF relative to the CB edge 
(bottom panel) within these non-parabolic bands at room temperature. A positive VTG drives EF to larger CQ regime, therefore Δφ has an almost linear dependence 
on VDS. However a negative VTG reduces CQ and leads to the weaker control of VDS over Δφ. The 20K CQ is shown for reference, displaying the the abrupt capacitance 
onset and near-constant value above onset expected within the parabolic regime. However, at 300K the thermal distribution smooths the onset and couples to the 
higher energy band structure producing the shown CQ. All the above simulations were performed with 15 nm channel and VBG = 0. 
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