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Abstract—We model a field-effect transistor making
use of the spin-polarized edge states of two-dimensional
topological insulators. To account for scattering while
respecting Pauli’s exclusion principle and the ballistic
limit, we employ the Boltzmann equation. We account
for phonon-assisted scattering processes and show that the
current can be modulated over several orders of magnitude
as a function of gate bias.

INTRODUCTION

To enable downscaling of electronic devices, the re-
quirement of maintaining electrostatic control mandates
the introduction of two-dimensional (2D) materials [1].
Many 2D materials are being investigated and presently
there is extensive research towards graphene and its
analogs such as silicene, germanene [2] and stanene
[3], towards transition-metal dichalcogenides in a hexag-
onal (H), a tetragonal (T) or a distorted tetragonal
(T’) phase, [4] or towards even more exotic materials
such phosphorene [5]. Unfortunately, the purity of these
materials is many orders of magnitude removed from
the levels of purity we are accustomed to in commercial
semiconductor technology and this inevitably limits the
performance of these materials in a conventional FET
context [6]. Additionally, scattering with out-of-plane
(flexural) modes can result in an important reduction
in mobilities [7]. Some newly proposed 2D materials
however are 2D topological insulators (TIs) [3], [8]–
[10], also known as quantum spin Hall insulators, which
means they have edge states which are protected against
the effects of impurities, defects and edge roughness as
well as scattering with phonons.

Recently, we have proposed to use 2D TI edge states to
realize field-effect transistors (TIFETs, Fig. 1) by mod-
ulating inter-edge scattering [11], [12]. To model these
we had relied on a drift-diffusion-like approximation in
Ref. [11]. However, the drift-diffusion approach cannot

handle the ballistic limit and this poses a challenge
when modeling TIFETs. On the other hand, quantum-
mechanical ballistic approaches fail because they do not
account for scattering. Moreover, quantum-mechanical
approaches that do account for scattering often violate
Pauli’s exclusion principle [13]. We show how the Boltz-
mann equation can be used to model TIFETs while
respecting the ballistic limit, Pauli’s exclusion principle,
and accounting for scattering.

Fig. 1. Schematic of a TIFET in the on-state where current is
carried by the edge states and backscattering is prohibited because
of spin-momentum locking. In the off-state inter-edge scattering and
scattering to “bulk” states is dramatically increased.

TOPOLOGICAL INSULATORS

To obtain the band structure of 2D topological insu-
lators, we rely on the Bernevig-Hughes-Zhang (BHZ)
Hamiltonian [8]

H = I2⊗
((

Eg

2
− ~2K2

2m

)
σ3 +

~kyp
m0

σ1 +
~2K2

2m′
I2

)
+

~kxp
m0

σ3 ⊗ σ2 (1)

where K = (kx, ky) is the two-dimensional crystal mo-
mentum, Eg is a bandgap, p a momentum matrix element
and m and m′ are two effective mass parameters. I2 is
the 2× 2 identity and σ1,2,3 are the Pauli matrices. The978-1-5090-0818-6/16/$31.00 c©2016 IEEE
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values we use are those that yield a band structure similar
to that of monolayer tin calculated from first principles
[3], [14], [15]: Eg = 0.5 eV, Ep = 2p2/m0 = 1.8 eV,
m = 0.08m and m′ = 0.12m0 where m0 is the free
electron mass. The resulting bulk TI band structure is
shown in Fig. 2.

The band structure of a TI ribbon is subsequently de-
termined by discretizing the Hamiltonian (ky → id/dy)
and a ribbon with a width (w) of 10 nm is shown in
Fig. 3. The states traversing the band-gap are the char-
acteristic – topologically protected – edge states which
form the basis of the TIFET operation. The edge states
are 2-fold degenerate: one edge state is located on the left
edge edge while the other is located on the right edge.
The edge states are spin-polarized and time-reversal
symmetry ensures that states with opposite momentum
(kx → −kx) on the same edge have opposite spin-
polarization (↑→↓). As a consequence, scattering pro-
cesses which conserve spin such as defect/impurity/edge
roughness scattering or scattering with phonons can not
mediate intra-edge back-scattering. Inter-edge backscat-
tering is allowed but since the wavefunctions associated
with the edge states decay exponentially, this process
is strongly suppressed for wide ribbons. The decay
length depends on the energy and the inter-edge overlap
integrals are the smallest for states with an energy near
the middle of the bandgap.
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Fig. 2. Bulk topological insulator band structure with a bandgap of
0.33 eV similar to the bandgap of functionalized monolayer tin.

BOTLZMANN EQUATION

To study the electronic transport in a FET structure,
accounting for scattering while respecting the ballistic
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Fig. 3. 10 nm topological insulator ribbon band structure. The states
traversing the bulk bandgap in the ribbon band structure are the
topologically protected spin-polarized edge states.

limit and Pauli’s exclusion principle, we solve the one-
dimensional Boltzmann equation

dEj(k)

d~k
∂fj(x, k)

∂x
+

dV (x)

~dx

∂fj(x, k)

∂k

+
∑
j′

ˆ
dk′
(

(1− fj(x, k))Sjj′(k, k
′)fj′(x, k

′)

− (1− fj′(x, k′))Sj′j(k′, k)fj(x, k)
)

= 0 (2)

where fj(x, k) is the Boltzmann distribution, x denotes
the transport direction, and k = kx, Ej(k) is the electron
dispersion (in our case for the TI) for subband j and
Sjj′(k, k

′) is the scattering rate. We discretize along the
reciprocal space with nk points and use central differ-
ence. Along the real-space direction we use nx points
and use a finite element approach, applying boundary
conditions at x = 0 and at x = L so that fj(x, k) equals
the Fermi-Dirac distribution when electrons are injected
in the device.

We include the electron-phonon scattering rate through

Sem,abs
ph (k, k′) = DK2 1

2ρω

(
1

2
∓ 1

2
+N(~ω)

)
× |M(k, k′)|2δ

(
E(k)− E(k′)

)
(3)

where DK is the deformation potential determined from
first principles [16], ρ the mass density per unit length,
ω the phonon frequency,

M(k, k′) =
∑
α

ˆ
dy φα∗k (y)φαk′(y) (4)

the matrix element determined from the ribbon wave-
functions φαk (y), and α the index running over the four
discrete degrees of freedom of the bulk Hamiltonian.
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For the acoustic phonons, we assume elastic scattering
and the electron-phonon scattering rate simplifies to
Sph,el(k, k

′) = ∆2kT |M(k, k′)|2/(~2ρv2s |dE/dk|)δ(k+
k′) where ∆ = dDK/dk. Here we assume a linear
energy dispersion for the phonon energy ~ω = vsq
while in reality, the out-of-plane (ZA) and the transversal
(TA) acoustic phonons will have a parabolic dispersion
possibly leading to much larger scattering rates. [7]

Since Eq. (2) is a non-linear equation because of the
Pauli exclusion (often ignored [17]) in the scattering
terms, we solve it by iterations using Newton’s method.
The Jacobian can be calculated exactly by differentiating
the left hand side of Eq. (2). As an initial guess for the
distribution function we take either the distribution from
the contacts or the distribution function from a previous
iteration. Convergence of Newton’s method is not always
obtained when a coarse x or k mesh is used in addition
to large discretization errors. At the same time there is
an upper limit on the mesh size because of the size of
the Jacobian and the associated memory constraints. In
our case, a good compromise was found by using 160
k-points and 80 x-points.

To obtain the potential distribution V (x), we solve
Poisson’s equation in two dimensions (x,z) with a source
and drain bias applied on the left (x = 0) and right
(x = L) and a gate bias in a gate region on the top
and bottom (|z| = t/2, |x− L/2| < Lgate/2). Since the
self-consistent solution of Poisson’s equation with the
Boltzmann equation requires the solution of an additional
non-linear problem, for convenience we presently limit
ourselves to a non-selfconsistent approach ignoring the
charge in the channel in the Poisson equation. The non-
selfconsistent approach can be expected to be a better
approximation as devices are smaller and have a higher
dielectric constant.

In Fig. 4, we show the Boltzmann distribution function
fj(x, k) of the edge states for L = 3µm, Lgate = 1µm,
Vgs = 0.36 V and Vds = 0.1 V as an illustration of a
typical solution. Because of the gate bias, the electrons
accelerate away from the source towards the gate re-
gion. In the gate region, states with higher energy are
occupied and the asymmetry of the distribution function
between positive and negative momentum results in a
non-vanishing current.

To clarify how current is carried in the device, we
show the “net velocity” of electrons with opposite
momentum v(k) (f(x, k)− f(x,−k)) in Fig. 5. The
limiting factor for the current through the TIFET is
determined by the scattering under the gate region. The
scattering rate is very small for energies in the bulk TI
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Fig. 4. Boltzmann distribution for the first conduction band in a
TIFET with L = 3µm, Lgate = 1µm, Vgs = 0.36V and Vds = 0.1V
. The gate bias makes the charge density larger in the gate region
(1000-2000 nm) compared to the source and drain regions.

bandgap (small k) but increase rapidly for energies closer
to the bulk TI band edges (increasing k).

In Fig. 6, we show the calculated current

J =

ˆ
dk

2π
v(k)f(x, k) (5)

(which is independent of x) as a function of gate bias
confirming the previously predicted switching behavior
for the TIFET based on the modulation of scattering
in the TI by changing the gate bias. Overall, using
the parameters used in this study, the simulated ratio
between on and off current is 2 orders of magnitude.
In the on-state (gate bias between -0.2 V and 0.1 V),
electrons travel ballistically through the edge states since
the overlap for intra-egde scattering vanishes (time-
reversal symmetry) and the overlap for inter-edge scat-
tering is very small (exponential decay in the bandgap).
In the off-state, the intra-edge scattering becomes much
stronger since the edge state energies are no longer in the
gap and the wavefunctions do not decay exponentially
anymore. Stronger scattering with phonons or scattering
with impurities will lead to a reduction of the off-current
while the impact on the on-current will be minimal.

CONCLUSION

The Boltzmann equation can be solved exactly for
one-dimensional structures yielding an approach capable
of dealing with scattering and Pauli’s exclusion principle
while respecting the ballistic limit. Using this approach,
we show that the TIFET maintains its switching behavior
after taking the ballistic limit into account. Using the
topologically protected edge states to deliver the drive
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current ensures that the TIFET will maintain its high
quasi-ballistic on-current even in the presence of defects
or impurities.
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Fig. 5. “Net velocity” of electrons with opposite momentum
vj(k) (fj(x, k)− fj(x,−k)) in the first conduction band. Compar-
ing with Fig. 4, we can see that the current is carried by those states
where the distribution makes a transition from 0 to 1.
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Fig. 6. Input characteristic of a TIFET obtained by solving the
Boltzmann equation for 0.1 V drain-source bias. When the gate bias
is around 0 V, scattering is minimal and electrons travel through the
channel quasi-ballistically. When the gate bias moves the Fermi level
into the bulk conduction or valence band, scattering is increased and
the current decreases.
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