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Abstract—The peculiar matrix form of the distribution 
function as the solution to the spinor Boltzmann Transport 
Equation (S-BTE) has been constructed to address the spin-
momentum locking in topological insulators (TIs). Further the 
hydrodynamic equations with the potential of including spin 
scattering is derived by taking the momentum moments of the 
Boltzmann-Vlasov (BV) equation, and is further solved 
analytically under the ballistic transport assumption. We obtained 
similar results for TIs as in graphene that the Dyakonov-Shur (D-
S) instability [1] can be sustained and the plasma-wave frequency 
can be tuned into Terahertz frequency range by changing the 
channel length in TI-FETs. Computational results are presented 
for the case of Bi2Se3. 
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I.  INTRODUCTION 

The feasibility of realizing terahertz signal emitters at room-
temperature has long been established by Dyakonov and Shur 
using high-electron mobility FETs (HEMTs), and 
hydrodynamic equation with asymmetric electrical boundary 
conditions (constant voltage source at the source contact and 
constant current source at the drain contact) [1]. When the carrier 
scattering in the channel is taken into consideration, it has been 
shown by numerical simulation that electron viscosity, as the 
predominant scattering mechanism for 2-dimensional electron 
gas (2DEG) , determines the condition for the existence and the 
strength of the D-S instability [2]. By using the hydrodynamic 
method, plasma-wave instability in graphene FETs (GFETs) at 
room-temperature has been analyzed under the ballistic 
assumption [3] and a viscosity term in the scattering process has 
been solved numerically [4]. The D-S instability in the channel 
of a FET is suppressed by scattering mechanisms, hence the 
channel materials with high carrier mobility are desired to 
maintain this type of plasma-wave instability at room-
temperature. 

Topological insulators (TIs) have a natural 2-dimensional 
conductive surface (for 3-D TIs) much like graphene, but the 
difference is that the former has one Dirac cone at Γ point, 
instead of two in graphene’s first Brillouin zone (at K and K’ 
points). Also, unlike graphene, due to the time-reversal 

invariance (TRI) of Hamiltonian and strong spin-orbit coupling 
(SOC) in TIs, the Kramers degeneracy is removed from the Γ 
point [5]. Although it is believed that the absence of 
backscattering [6] in TIs contributes little to the potentially high 
mobility, the chiral spin-momentum locking (see the 
Hamiltonian given later) nonetheless makes carriers on TI’s 
surface insensitive to non-magnetic scattering. This is because 
in a two-body non-magnetic (a carrier and an impurity, for 
instance) collision, the total spin angular momentum is 
conserved, and thus the spin of the impurity must be changed to 
counter-balance the change of the spin and orbital momentum of 
the carrier if happens. It is this constraint that makes the carrier’s 
momentum of the surface conductive state correlated to its spin 
in the process of scattering. Even though the specific form of the 
scattering mechanisms in TIs is still an open problem, a 
framework is needed to let us take into consideration the effect 
of spin on orbital momentum. 

In this study, we generalize the scalar distribution function 
to a matrix form, which includes the spin-momentum locking, 
and is the solution to Boltzmann-Vlasov (BV) equation [7]. The 
matrix distribution function in TIs gives the spin polarization 
density explicitly, and spin scattering mechanisms can be 
accommodated in the BV equation. Hydrodynamic equations 
with spin can further be derived by applying moment method to 
BV equation and they can be solved analytically under the 
ballistic assumption. We obtained a similar exponential 
increment for the amplitude of plasma-wave as in GFETs, 
justifying the feasibility of this method to some extent. 

II. METHOD 

For the spin-momentum locking in TIs be taken into 
consideration, we adopt a matrix form of a so-called pseudo-
distribution function, which is derived from the density matrix 
based on the eigenfunctions of spin states by Wigner 
transformation: , where  and  are 

 identity matrix and the Pauli basis set, respectively, and  
is a 3D-vector, hence  is a  complex matrix. According 
to the Wigner transform relation given in [8] and the property of 
density matrix 
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   (1) 

 is the classical electron (assuming the carriers are 
electrons) distribution function while  
is the projection of spin on the direction of , thus  represents 
the distribution of vector spin polarization. Although the 
physical meanings of the traces on  are clear, the equations of 
these variables are too complex to solve both analytically and 
numerically [8]. Here we do not get the traces of the Wigner 
quasi-distribution function at the beginning but extract the 
information about the spin component from the hydrodynamic 
equation afterwards. The form of the BV equation obtained from 
the Wigner transformed quantum Liouville equation by taking 
the classical limit is relatively simple [9]: 

   (2) 

where the second term on the left is introduced to eliminate the 
imaginary part, and the forth term describes the spin precession, 
while in our case they are  and 0, respectively.  is the 
collision integral. 

In Bi2Se3 the effective surface Hamiltonian is 
 [6], from which the velocity 

can be obtained by , where  is the 
unit vector of spin polarization of an electron,  is the unit vector 
in the direction of positive  axis (the  axes are on the surface 
of Bi2Se3) and  is the Pauli operator. Thus, since the spin 
polarization is perpendicular to the momentum, which can be 
expressed as , the matrix distribution function has a 
peculiar form of . In the absence of 
external magnetic field, which will break the time-reversal 
invariance in TIs, decoupled Boltzmann transport equation (3) 
and spin polarization equation (4) are obtained immediately by 
substituting  into the rigorous form of BV equation (2). 

   (3) 

   (4) 

Here we represent the spin polarization in terms of  
instead of , in that our purpose of deriving this model is to 
consider the effects of spin scattering on momentum transport. 
The set of corresponding hydrodynamic equations is an infinite 
hierarchy and some further condition, especially the 
approximate form of the distribution function, is necessary to 
truncate the infinite series of equations. This is equivalent to 
finding an approximate solution of the distribution function in a 
fixed functional subspace. The displaced Fermi-Dirac 
distribution is chosen as the nonequilibrium distribution, as in 
[3]: 

   (5) 

where  [6],  is the Fermi level which is 
assumed to be above the Dirac point (i.e., n-type),  is the 
collective drift velocity assumed to be in  direction only. This 
form of distribution assumes that apart from the energy arising 
from the collective motion , which can be included in the 
quasi-Fermi level, electrons still obey Fermi-Dirac distribution 
as a result of the maximum entropy principle. The term 

 is introduced to eliminate the unreasonable 
dependence of the electron concentration on the drift velocity. 

After the zeroth- and first-order moments in momentum for 
the nonequilibrium distribution function are taken, (3) leads to 
the continuity equation and the Euler equation; (4) leads to the 
equations on spin polarization (6) and spin-momentum tensor 
(7). In the following, we restrict the derivation in 2-D case. 

  

 (6) 

   (7) 

where  is a relativistic factor defined by , and the electron 
density , energy density 

. During 

the derivation all the terms of  higher than fourth order have 
been neglected. Equation (6) represents the change of spin 
polarization density in time resulting from the gradient of 
electron concentration and drift velocity. It contains no more 
information than the continuity equation does, and since the drift 
velocity and its time dependence both are small, some 
information about it has been ignored via approximation. Thus 
we solve (7) analytically by incorporating the carrier continuity 
equation  instead. The spin-momentum 
tensor represents the momentum density along a certain 
direction of spin, and its diagonal elements are zero due to the 
spin-momentum locking. The space derivative of the electric 
potential can be associated with the electron concentration 
through the Poisson’s equation for two-dimensional charge 
system [3], and in TI-FETs this relation is 

. Also the 
derivatives of  are simplified in a similar way as in [3]: 

 while , 

then  and 

 where  

. Thus, 

the set of the continuity equation and the Euler equation, and the 
set of the equations about spin are closed, respectively. 
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The boundary conditions,  at constant voltage 
source and  (L is the channel length) at constant 
current source, are sustained. In the case of one-dimensional 
motion, assuming that all of the variables are uniform in  (i.e., 
width) direction, we restrict the equations to  direction, and 
concentrate on the spin component in  direction: 

  (8) 

where . The solution process is simplified 
through the decomposition of solutions to the sum of steady-
state part and time-harmonic perturbation part, i.e. 

; 
where  has both real and imaginary parts, i.e., a complex 
number [1, 3]. 

III. RESULTS AND DISCUSSION 

The analytical solution for the frequency of the plasma-wave 
is shown in (9) and (10) where 

,  and  
are introduced for simplicity. 

   (9) 

   (10) 

As we can see, in order to sustain the D-S instability, the 
increment of the wave amplitude (the imaginary part ) must 
be positive, thus A and B must be both positive. Knowing from 
the expressions, ,  and  can be written out in terms of 
Fermi-Dirac integration  explicitly: 

,  and 

. In the condition of a strongly 

degenerate system ( ), there are asymptotic relations: 

,  and 
. Further,  and  which appear in A, B and C can be 
presented as  and 
, where  is the thermo-electron concentration when  
and has a typical order of  [3]. Therefore, the 
condition that A and B are positive can be met easily only if the 
system is strongly degenerate and the drift velocity is 
sufficiently small. The oscillation frequency (the real part ) 
can be tuned by changing the channel length. 

Assuming that the gate dielectric is SiO2 and the thicknesses 
of SiO2 and Bi2Se3 are both 20 nm, we use the following 
parameters: , , . The surface 
electron density varies from  to  
[10]. When the channel length is 40 nm (smaller than the typical 
value in graphene), the oscillation frequency is generally about 
1 THz, and the increment of the wave amplitude is larger than 
that in graphene [3] in a wide range of . 

However, in terms of the physical picture, there should be no 
difference between the 2-D surface conductive states of TIs and 
graphene except for the degeneracy in the absence of spin 
scattering (this can also be accepted in that the equations of the 
charge transport have the same form with those in graphene). 
The differences of the analytical solutions between TIs and 
graphene stem from the framework itself. As discussed above, 
in general the approximate solutions we obtain in the fixed 
functional subspace differ considerably from the exact solution 
because the distribution functions always hold complex forms 
(see the examples in [11]). Furthermore, after the form of 
distribution function has been fixed, any variable in 
hydrodynamic equations can be presented in terms of the 
variables in the distribution function, thus any two equations in 
this infinite hierarchy are closed. Our principles for selecting 
from these equations are the physical meaning and the variables 
on which we are concentrating. In the study of the transport 

 
Fig. 2. The increment of the wave amplitude (the imaginary part of ω) as 
function of the electron drift velocity. The electron density is chosen to be 
3×1012 cm-2. The wave increment will be negative if the drift velocity is 
close to vF, typically larger than 0.9vF, so the curves in that range are not 
shown here. 
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Fig. 1. The dependence between oscillation frequency (the real part of ω) 
and channel length. The dashed line shows the 1 THz frequency. The drift 
velocity is fixed at 0.05vF and the surface electron density is fixed at 1013 
cm-2. 
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properties in graphene, the continuity equation and the Euler 
equation are the zeroth- and the first-order moments of the 
Boltzmann equation, respectively, while the spin-momentum 
equation in our work is higher than first order. 

It might be noted that the effect of the spin-orbit coupling in 
TIs doesn’t appear in the  term in the BV equation. This 
is natural, since this term is replaced by  in the common 
method to deal with it but the spin-orbit coupling cannot be 
represented by a conservative potential. However, the effect of 
the spin-orbit coupling is to make the direction of spin 
perpendicular to momentum, which has already been taken into 
consideration in the spin polarization part of the distribution 
function. 

IV. CONCLUSIONS 

Due to the linear spectrum of the carrier energy on the 
surface and the spin-momentum locking, TI-FETs are 
considered as potential candidates for room-temperature THz 
emitter. We propose the hydrodynamic framework based on 
spinor Boltzmann transport equation in order to include the spin 
scattering mechanisms in future work. The spin-momentum 
locking in TIs is considered in the matrix Wigner distribution 
function. It gives similar analytical results as with our results in 
graphene [4], illustrating that the D-S instability and the 
possibility of THz oscillation can be sustained on the surface of 
TIs, which proves the feasibility of this framework. Further 
research on the scattering mechanisms in TIs is needed to handle 
the spin scattering in our hydrodynamic framework. 
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