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Abstract—Impurities being present in a semiconductor in 
high concentrations may form agglomerates. Agglomeration 
usually demobilizes the impurities and, in case of dopants, also 
renders them electrically inactive. A standard approach in 
continuum process simulation assumes the formation of 
energetically favorable small clusters of size m. High numbers of 
m are used to mimic an often desired saturation of the 
concentration of unclustered impurity atoms with increasing 
total concentration. However, for systems far from equilibrium, 
potentiated high concentrations may lead to numerical problems. 
In this work, an alternative formulation is presented which 
features a saturation of the unclustered impurity concentration 
while introducing only one equation derived from Waite’s theory 
of diffusion-limited reactions. 
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I.  INTRODUCTION 

With increasing impurity concentration, a significant 
fraction of the impurities is often found to be immobile during 
annealing processes or electrically inactive thereafter. The 
phenomena responsible may range from the formation of 
clusters comprising only few impurity atoms up to the 
formation of precipitates incorporating hundreds to thousands 
of atoms and more. For some impurities like boron [1], arsenic 
and phosphorus [2], or oxygen [3], detailed models are 
available which explain at least a large part of the relevant 
experiments. For most of the other impurities, no detailed 
information is available about the energetics and formation 
kinetics of possible complexes. 

In continuum process simulation, the base line of modeling 
immobile or electrically inactive impurities is to postulate the 
preferential formation of small clusters. Inspired by the early 
work of Hu [4], the rate of formation of such clusters is usually 
assumed to be proportional to the concentration of unclustered 
impurity atoms to the power of the number of impurity atoms 
in the cluster. In most publications, clusters comprising two to 
four impurity atoms are assumed. However, to mimic impurity 
precipitation with its saturation of the concentration of 
unclustered impurity atoms, the number of impurities in the 
cluster can be increased towards ten or more. 

Particularly after ion implantation, impurities with a low 
solubility may be present in the host matrix with an 
oversaturation of several orders of magnitude. For such 
systems, numerical problems may arise from the power law. To 
avoid them, an alternative formulation of an empirical cluster 

law has been developed on the basis of the classical nucleation 
theory. In the following, after discussing the empirical cluster 
models, the new model will be motivated and its properties and 
potential applications will be outlined.  

II. EMPIRICAL CLUSTER MODELING 

In the early 1970s (e.g. [5]), researchers started to explain 
experimental evidence for an incomplete activation of arsenic 
by assuming that energetically particularly favorable clusters 
Xm comprising m monomers X form via the quasi-chemical 
reaction 

 m X → Xm . (1) 

The first dynamic description of such a cluster formation was 
formulated by Hu [4] in analogy to the model of Kaiser et al. 
[10] for the formation of thermal donors. Hu assumed that X4 
clusters would form preferentially, with the reaction of arsenic 
monomers with X3 clusters being the rate-limiting step. The X2 
and X3 clusters were assumed to be in steady state with the 
monomer concentration on a much shorter timescale. 
Generalized to m impurities in a cluster, the change of the 
cluster concentration ܥX೘ and the monomer concentration ܥX 
with time due to cluster formation was obtained as being 
proportional to the monomer concentration to the power of m 

ݐX೘݀ܥ݀  ቤ
form

= − 1݉ ݐX݀ܥ݀ ฬform
=	݇௙ܥX

௠ (2) 

with ݇௙ denoting the forward reaction constant. A similar result 
would have been obtained from the kinetic law of mass action 
developed by Brönsted [6], [7] and Haase [8], [9]. It should be 
noted, however, that the substitutional arsenic atoms referred to 
in (2) are immobile per se and can move only by forming 
mobile complexes with self-interstitials or vacancies. 
Accordingly, no direct atomistic interpretation exists for the 
forward reaction rate ݇௙ so that the cluster equation remains 
rather empirical. Simultaneous to the formation of clusters, 
already formed ones may dissolve. This leads to a change in 
the cluster and monomer concentrations of 

ݐX೘݀ܥ݀  ቤ
diss.

= − 1݉ ݐX݀ܥ݀ ฬdiss.
= −݇௕	ܥX೘ , (3) 

characterized by the backward reaction constant ݇௕ which can 
be seen as an inverse time constant of the cluster dissolution. 
The total change in the cluster and monomer concentrations is 
given as the sum of the both. In steady state, the total 
concentration ܥ௑௧௢௧	is given by 
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௑௧௢௧ܥ  = ௑ܥ ௑೘ܥ	݉+ = Cଡ଼ + ݉ ݇௙݇௕ Xܥ
௠	. (4) 

Experiments at that time indicated a saturation of the 
electrically active dopant concentration with an increasing total 
concentration. However, on the basis of (4), one would just 
expect a flattening and not a saturation. Including charge 
carriers in the reaction so that a neutral cluster results from the 
reaction of m ionized impurities and m compensating charge 
carriers would just lead to a doubling of the exponent in (2) and 
not to the desired saturation. As a loophole, it was proposed by 
Tsai et al. [11] and Guerrero et al. [12] that a saturation of the 
concentration of unclustered arsenic atoms can be obtained 
when m arsenic atoms are assumed to form a (m-1)-positively-
charged cluster at diffusion temperature. However, since 
charged clusters would also act as donors, it is necessary to 
assume that they are electrically inactive at room temperature. 

III. CLUSTER FORMATION IN LIGHT OF THE CLASSICAL 

NUCLEATION THEORY 

The empirical cluster model outlined above has been used 
successfully in many investigations of dopant diffusion and 
activation. Dopants in semiconductors are usually 
characterized by a high solubility so that the ratio of dopant 
concentration and solubility is rather limited. This is not 
necessarily the same for other systems. Platinum, as an 
example, diffuses in silicon as interstitial with a rather low 
solubility while high concentrations can be introduced by ion 
implantation [13]. Raised to a high power, such concentrations 
may lead to a cluster formation rate which requires 
inadmissibly small time steps for a sufficiently accurate 
solution. To overcome this problem, an alternative cluster 
model was derived on the basis of the classical nucleation 
theory of Turnbull and Fisher [14]. 

Within the classical nucleation theory, clustering of mobile 
monomers X proceeds via a chain of binary reactions 

 X + X ⇌ Xଶ 
X + Xଶ ⇌ Xଷ 

… 
X+⇌ X௠ 

(5) 

between the monomers and already formed clusters. Being 
interested at first in systems far from equilibrium, the backward 
reactions are ignored. One then obtains a system of equations 
in the form 

ݐ௑݀ܥ݀  = −2	݇ଶ	ܥX
ଶ − ݇ଷܥ௑ܥ௑మ − ⋯− ݇௠ܥ௑ܥ௑೘షభ 	݀ܥXమ݀ݐ = ݇ଶ	ܥX

ଶ − ݇ଷܥXܥXమ ݀ܥX೙݀ݐ = ݇௡	ܥX	ܥX೙షభ − ݇௡ାଵܥ௑ܥ௡; 	2 < ݊ < ݐX೘݀ܥ݀ ݉ = ݇௠	ܥX  X೘షభܥ

(6) 

The forward reaction rates ݇௡ can be obtained from Waite’s 
theory of diffusion-limited reactions [15]. For the reaction 
leading to the formation of X௡ clusters, one then obtains a 
forward reaction rate of 

  ݇௡ = ௑ܦ	ߨ	4 ܽ௡ିଵ (7) 

with ܦ௑ denoting the diffusion coefficient of the monomers 
and ܽ݊−1 the capture radius of the X௡ିଵ clusters. When we 
assume for the sake of demonstration that the immobile 
clusters have similar properties, all reaction constants ݇௡ can 
be assumed equal for n > 2. Only the reaction constant ݇ଶ 
between two monomers should be twice as large. 

Simulations of the monomer concentration ܥX resulting 
from the empirical cluster model and the nucleation theory are 
compared in Fig. 1 for different assumptions about the 
dominating and maximum cluster size m, respectively.  For the 
nucleation theory, forward reaction rates ݇௡ of 10-19 cm-3s-1 
have been assumed while the parameters of the empirical 
cluster model were adjusted to give the same ݀ܥX/݀ݐ		for t	=	0. 
For a cluster size of two, the two models are identical and lead 
to the same result. For larger clusters (m > 2), an increasingly 
slower reduction of the monomer concentration is predicted by 
the empirical cluster model. This is because ܥX

௠ decreases 
faster than ܥX

ଶ with decreasing monomer concentration. In 
contrast, a faster decrease of the monomer concentration is 
predicted by the nucleation theory when m is increased. The 
faster decrease at lower monomer concentrations results from 
the additional reactions between monomers and clusters 
already formed. Since the concentration of clusters decreases 
rapidly with size, reactions with clusters of size m equal to two 
and three will dominate so that only marginal changes can be 
seen when larger clusters are considered in addition.  

IV. THE NEW MODEL 

In order to become a viable alternative to the empirical 
cluster model, any reformulation should better not increase the 
number of equations. This then comes down again to 
postulating a cluster X௠ of size m for which only one equation 
is required. However, in contrast to the previous assumption of 
a dominant cluster size, we consider here a cluster which 
represents the entirety of the formed clusters in the sense of a 
one-moment model [16].  For the reaction scheme of mobile 
monomers formulated in (6), the rate-limiting clustering 
reactions are the reaction of two monomers 

 
Fig. 1. Comparison of the monomer concentration resulting from the 
empirical cluster model (1) and the nucleation theory (6) for different 
dominating and maximum cluster sizes m, respectively. 
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X + X 

௞మ→	 2݉ X௠	. (8) 

and the reaction of a monomer with the cluster 

 
X + X௠	௞೘ሱሮ	݉ + 1݉ X௠	. (9) 

The factors 2/m and (m+1)/m therein result from mass 
conservation. From (8) and (9), the formation rate of the 
clusters is obtained as ݀ܥX೘݀ݐ ቤ

form

= − 1݉ ݐX݀ܥ݀ ฬform=	 2݉ 2ܺܥ	2݇ + 1݉ ݉ܺܥ	ܺܥ	݉݇	  

(10) 

In order not to overload the figure, only few points of the 
resulting curves are shown in Fig. 2 in comparison to the 
predictions of the nucleation theory. For both values of m, a 
close agreement with the nucleation theory is observed for 
identical parameters ݇ଶ and ݇௠. With increasing m, the 
monomer concentration decreases slower. This is owed to the 
fact that the concentration of the X௠ cluster decreases with m 
due to mass conservation so that reaction (9) becomes slower.  
To complete the system, one can adopt the same assumption as 
for the empirical cluster model (3), namely that the X௠ clusters 
dissolve with a rate ݇௕ to m monomers each.  

V. EXTENSIONS TO INCLUDE CHARGE CARRIERS AND 
INTRINSIC POINT DEFECTS 

Within Waite’s theory of diffusion-limited reactions, 
charge states of the reactants do not change the structure of the 
equations. As shown by Debye [17], one just obtains an 
enlarged capture radius in case of Coulombic attraction and a 
reduced capture radius in case of Coulombic repulsion.  

In semiconductors, many impurities reside preferentially on 
substitutional sites (Xs) and are immobile there. In order to 
diffuse, they have to form complexes with intrinsic point 

defects, i.e. vacancies (XV) or self-interstitials (XI). Since the 
concentrations of these mobile species are rather low in 
comparison to the substitutional concentration, one would 
expect that the rate-limiting reaction changes to  

 XI + Xs → 	 2݉ X݉ + I. (11) 

for the example of a species which diffuses preferentially via 
self-interstitials. The reaction with XM complexes can be 
written in analogy and added to give the total cluster formation 
rate. Similarly, in (9), the nascent intrinsic point defect needs to 
be included on the right-hand side when a mobile XV or XI 
defect reacts with a cluster. Point defects have to be considered 
also in the dissolution equation of the clusters. Assuming again 
a dominance of the diffusion via self-interstitials, dissolution of 
an Xm complex could be described, e.g., by the creation of 
impurity-self-interstitial complexes  

 X௠ → Xs + ሺ݉ − 1ሻ	XI + ሺ݉ − 1ሻ V. (12) 

which leaves an appropriate number of vacancies behind. 

VI. APPLICATION TO SYSTEMS IN OR CLOSE TO EQUILIBRIUM 

While the model has been developed for systems strongly 
out of equilibrium, it might also be of interest for systems in or 
close to equilibrium. In equilibrium, the total concentration ܥ௑೅ 
of the impurities is related to the monomer concentration by ܥX௧௢௧ = Xܥ + ݉ X݉ܥ = ݉ Xܥܾ݇ + ሺ2	݉	݇2 − ݇݉ሻܥX2݉	ܾ݇ − Xܥ݉݇ . (13) 

From the denominator follows that the monomer concentration 
saturates for ܥXݐ݋ݐ → ∞ at ܥ௑ = ݉	݇௕/݇௠ =  ௦௢௟. Asܥ
mentioned already in Section II, such a behavior was always 
desired for dopant clustering but could previously be achieved 
only on the basis of debatable assumptions. Based on the 
solubility concentration ܥ௦௢௟, (13) can be rewritten in the form 

݈݋ݏܥ/X௧௢௧ܥ  =	 ݈݋ݏܥ/Xܶܥ + ൯ଶ1݈݋ݏܥ/Xܶܥ൫ߙ − ݈݋ݏܥ/Xܶܥ  (14) 

with the parameter ߙ = 2	݉	݇ଶ/݇௠. This relationship is shown 
in Fig. 3 for selected values of ߙ. Assuming k2 to be twice as 
large as km leads for m = 4 to a value of 16 = ߙ which gives a 
rather gradual approach of the solubility concentration. 
Decreasing ߙ towards the limiting value of ߙ	1- = enables 
sharper approaches. 

To demonstrate also the empirical capabilities of the model, 
experimental data on the electrical activation of arsenic from 
Guerrero et al. [12] and the references therein as well as from 
Bauer et al. [18] are compared in Fig. 4 to simulations with the 
new model. In equilibrium, the experiments are reproduced 
excellently with a shape parameter of 0.8 = ߙ. As a further 
example, dynamic simulations for the data of Bauer et al. at 
900 °C are shown in Fig. 5. Here, it is apparent that the 
experimental data shows a somewhat slower decrease with 
time than the simulations. This is in agreement with the general 
expectation that arsenic clustering is associated with a 
configuration comprising few arsenic atoms around a vacancy.   

 
Fig. 2. Comparison of the monomer concentration resulting from the 
nucleation theory (6) and the new model (10) for different maximum and 
representative cluster sizes m, respectively.
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VII. CONCLUSIONS 

In  this work, a complementary formulation of a clustering 
model was developed. It was derived on the basis of the 
classical nucleation theory and uses only physically motivated 
binary reactions. Featuring a saturation of the monomer 
concentration, the sharpness of this saturation can be tuned via 
the model parameters. To demonstrate the empirical 
capabilities of the model, it was compared to arsenic clustering 
experiments. 
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Fig. 3. Monomer concentration scaled by the solubility concentration as a 
function of the total concentration scaled by the solubility concentrations 
for different values of the parameter α. 

 
Fig. 4. Active vs. total arsenic concentration modeled with 0.8 = ߙ, 
experimental data points from Guerrero et al. [12]  and the references 
therein, and from Bauer et al.[18]. 

 
Fig. 5. Simulation of dynamic arsenic clustering at 900 °C, experimental 
data points from Bauer et al. [18]. 
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