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Abstract—A deterministic approach for solving the Poisson,
Schrödinger and Boltzmann equations in 3D nanoscale devices
is presented for the first time, where the Schrödinger equation
is included via first order perturbation theory in the Newton-
Raphson scheme. The developed solver is shown to be stable even
in deep subthreshold simulations, and can provide insight in key
phenomena occuring in ultra-short devices with confinement in
two spatial dimensions.

I. INTRODUCTION

In recent years, the deterministic approach to the Boltz-
mann transport equation (BTE) has evolved into a useful
alternative to the stochastic Monte Carlo method. In this
regard, many works have focused on self-consistently solving
the coupled system of Poisson, Schrödinger, and Boltzmann
equations [1], [2]. While all these works have used Gummel
type iteration schemes, it is well-known that a full Newton-
Raphson (FNR) method is superior in its convergence be-
havior and total solver time, and also paves the way to-
wards small-signal and noise analyses. Concentrating on the
Boltzmann/Schrödinger/Poisson system of equations, in 2013
Ruić et al. presented the first (and to date the only) FNR
solver applicable to 2D devices that are translation invariant
in their third spatial dimension [3]. However, a great variety of
recent electronic devices are not translation invariant in their
transverse direction and have to be treated in 3D. Following
the main ideas in Ref. [3], we have extended the simulation
domain to 3D devices and present a fully-coupled Pois-
son/Schrödinger/Boltzmann FNR solver applicable to devices
with confinement in two dimensions.

This paper is organized as follows: after this short introduc-
tion, section II aims to explain in more detail the numerical
schemes employed in our FNR solver. We then validate our
solver by presenting and discussing the results of simulations
in section III. The used framework allows to extract device
properties such as transfer-characteristics, subthreshold-slope
and DIBL and a look at the scaling behavior of the device
directly based on physical models. Conclusions are finally
drawn in section IV.

II. MODEL

Figure 1 shows a x−z cross section of the simulated device,
which is an ultra-short radially-symmetric nanowire MOSFET.
The z direction is the transport (longitudinal) direction and x,
y the transverse directions. The Poisson equation is solved for
the electrostatic potential in the 3D real space, the Schrödinger
equation for each transverse cross section along the longitudi-
nal axis, and the BTE for each subband in transport direction.

In what follows, we go through the details of our for-
mulation and briefly explain how to incorporate the three
constituent equations into an FNR solver. Different functions’
domains of interest are omitted for better readability.

A. Schrödinger equation

In order to model the effects of quantum confinement, we
solve the time-independent Schrödinger equation in x − y
slices perpendicular to the transport direction and obtain 1D
subbands for electrons:[
− h̄2

2
∇xy · (m−1ν,⊥∇xy)− qϕ(r)

]
ψν(r) = εν(z)ψν(r) (1)

with mν,⊥ being the valley-dependent effective mass tensor in
the transverse plane and q the positive electron charge. εν(z) is
the resulting energy eigenvalue and ψν(r) is the corresponding
wavefunction. ν = (v, s) captures both the valley index and
the subband index.
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Fig. 1. Schematic drawing of the x − z cross section of a gate-all-around
junctionless nanowire transistor with a silicon channel.978-1-5090-0818-6/16/$31.00 c©2016 IEEE
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B. Poisson equation

The potential in the 3D simulation domain obeys the Pois-
son equation:

∇r ·
[
κ(r)∇rϕ(r)

]
= q
[
n(r)−ND(r)

]
(2)

where ϕ(r) is the electrostatic potential, n(r) is the electron
concentration, ND(r) is the donor concentration, and κ(r) is
the isotropic dielectric constant.

Equation (2) is solved for an unstructured triangular grid
using the finite volume method, which guarantees flux con-
servation. Discretization leads to a set of equations with a
structure as,

FPE := PLin(ϕ) + PCh(f ; ε, ψ) = 0 (3)

where PLin represents the discretization of the differential
operators and has a linear dependency on the electrostatic
potential. The second term PCh, on the other hand, contains
the charge density and hence represents a direct feedback from
BTE into PE. The electron density is calculated as:

n(r) = 2
∑
ν

(∫ ∞
εν(z)

Zν(z,H)fν(z,H)dH

)
|ψν(r)|2 (4)

where Zν(z,H) is the 1D DOS, and the subband energies are
the lower bounds of integration in the H-transformed energy
space.

C. Boltzmann equation

The stationary BTE with its 1D k-space reads:

v(kz)
∂

∂z
fν(z, kz) +

1

h̄
F (z)

∂

∂kz
fν(z, kz)− S{f} = 0 (5)

where F (z) and v(kz) are the force and group velocity
in transport direction, respectively. S{f} is the scattering
integral.

The choice of the discretization scheme strongly influences
the numerical performance and stability of the solver. In
this work, we have used the so-called H-transformation for
which (5) is formulated in the total energy H [4]. This
transformation removes the derivative w.r.t. kz and the BTE
changes into a first order partial differential equation only in
z, with the total energy merely acting as a parameter. With
the H-transformation, we immediately get the advantage of
having a grid which is aligned with the trajectories of ballistic
carriers. This implies that the equation can be easily stabilized
by introducing a staggered grid and splitting the distribution
function into its even/odd parts. An odd-elimination process
results in matrices which have property M. This, however,
comes at a certain cost: the total energy grid must be aligned
with the subband energy profiles, and the detailed dependence
of electron velocity, DOS and scattering rates on subband
minima must be carefully taken into consideration. After the
box integration, we get the following structure for the BTE:

FBTE := BFr(f ; ε) + BSc(f ; ε, ψ) = 0 (6)

where BFr and BSc represent the free-streaming and scattering
terms, respectively. These terms implicitly depend on the
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Fig. 2. Convergence behavior of our FNR solver for different damping factors.
The damping is turned off when the error is less than 10−1.

electrostatic potential through εν and ψν , which are obtained
from the Schrödinger equation.

Regarding the scattering term, different types of scattering
processes are characterized by their respective transition rates.
The inter-valley transition rate reads [5]:

Sη,ν′ν(~k′|~k) =
π (DtKη)

2

Ωρωη
F νν

′
(
n(h̄ωη) +

1

2
± 1

2

)
δ
(
εν′(~k′)− εν(~k)± h̄ωη

)
r(η, ν(~k′), ν(~k))

(7)

where ρ is the mass density, DtKη the coupling constant, ωη
the phonon frequency, and r the selection rule of the phonon
mode η. The occupation number for the phonons is given
by the Bose-Einstein distribution. The intra-valley acoustic
phonon scattering is approximated as an elastic process, and
treated within the deformation potential theory [5]:

Sν′ν(~k′|~k) =
2π(kBTL)Ξ2

h̄ρu2l
F νν

′
δ(v − v′) (8)

Ξ is the deformation potential and ul is the longitudinal sound
velocity. Fνν′ represents the overlap integral, and is given by:

F νν
′

=

∫
dxdy|ψν(x, y)|2 |ψν

′
(x, y)|2 . (9)

D. Full Newton-Raphson method

The coupled Boltzmann, Poisson, and Schrödinger equa-
tions are solved by the Newton-Raphson scheme, with the
unknown variables being ϕ(r) and fν(z,H). The depen-
dency on electrostatic potential is considered implicitly in
the electron density with εν(z) and ψν(~r), which represent a
direct feedback from the Schrödinger equation to the Poisson
equation.

The Schrödinger equation, being an eigenvalue problem,
cannot be directly cast into the FNR matrix equation. However,
we can use the first order time-independent perturbation theory
in order to express the changes in εν and ψν in terms of
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changes in electrostatic potential and calculate the correspond-
ing derivatives [6]. The first order correction to the subband
energies and wavefunctions due to a small perturbation δϕ for
the non-degenerate case is:

δεν(z) = −q
∫
dr′|ψν(r′)|2δϕ(r)δ(z′ − z) (10)

δψν(r) = −q
∑
s′ 6=s

∫
dr′ψν

′
(r′)δϕ(r)ψν

′
(r′)

εν(z)− εν′(z)
ψν

′
(r′)δ(z′− z)

(11)
Linearization of the three equations gives:

FPE =

(
∂PLin

∂ϕ
+
∂PCh

∂ε

∂ε

∂ϕ
+
∂PCh

∂ψ

∂ψ

∂ϕ

)
δϕ+

∂PCh

∂f
δf

(12)

FBTE =

(
∂BFr

∂ε

∂ε

∂ϕ
+
∂BSc

∂ε

∂ε

∂ϕ
+
∂BSc

∂ψ

∂ψ

∂ϕ

)
δϕ

+

(
∂BFr

∂f
+
∂BSc

∂f

)
δf (13)

which can now be incorporated into the FNR solver.
In order to avoid divergence in the first few iterations, we

can either use a Gummel type iteration up to a predefined
threshold and then start the FNR solver, or we can use a
damping factor in the first iterations of the FNR scheme.
Figure 2 demonstrates the influence of a damping factor on
the convergence behavior. As expected, while having a damp-
ing factor helps in solving the FNR equations in otherwise
divergent cases, choosing a too small potential update might
also result in an unnecessary long simulation time. Therefore,
a reasonable value for ω has to be chosen for each simulation.

III. RESULTS

In this section we demonstrate the features of our solver by
simulating ultra-short radially-symmetric nanowire MOSFETs.
The source/drain n+ regions are 10nm long each, with doping
concentration of N+

D = 2 × 1019cm−3. The channel region
is doped to ND = 1 × 1014cm−3. Potential and electron
density for different gate biases are shown in Fig. 3 along
the symmetry line (z axis) of the device. We can see that the
deterministic simulation in H-space is numerical robust and
produces very smooth results over more than 10 decades of
magnitude. Such deep subthreshold simulations are practically
impossible with Monte Carlo methods.

Figure. 4 shows the calculated IDS − VDS characteristics
for different VGS values. An abnormal kink is evident in the
results, which shifts to higher VDS values for higher gate
voltages. This kink vanishes in the ballistic limit, and is caused
by elastic scattering when VDS is such that the maximum of
the electron distribution in the first subband is energetically
aligned with the bottom of the second subband near the drain
end of the device. This effect is discussed in more detail by
Fischetti et al. [2].

Next, the device characteristics have been investigated as
a function of channel length, with Lch ranging from 5nm to
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Fig. 3. (a) Electron density, and (b) electrostatic potential in the transport
direction for different gate voltages. The values are plotted at the center of
nanowire. The channel length is Lch = 28 nm.

90nm. Looking at Fig. 5 and Fig. 6, it is evident that while
the output current is larger for shorter channel lengths due to
the proportionality of channel resistance and channel length,
the device loses a great deal in performance in terms of its
subthreshold slope and output resistance. With Lch < 10 nm,
the gate’s electrostatic control is not sufficient to keep the
subthreshold swing at the theoretical minimum. The subthresh-
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Fig. 4. IDS−VDS curves of the transistor at different gate biases. The channel
length is Lch = 28 nm.
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Fig. 5. Output characteristics of the simulated transistor for different channel
lengths at VGS = 0.25V .

old swing, however, remains approximately constant beyond
Lch = 10 nm.

Finally, the scaling behavior of the simulated silicon
nanowire MOSFET in terms of its on-current Ion, off-current
Ioff, and Ion/Ioff ratio is presented in Fig. 7. The on-current
is measured at VGS = 0.25V and the off-current at VGS =
−0.25V , both with VDS = 0.4V . Again, the device’s per-
formance deteriorates as we scale the channel length below
15− 20 nm.

IV. CONCLUSION

We have developed a quadratically converging stable FNR
solver for the combined system of Poisson, Schrödinger and
Boltzmann equations which can be used for numerical in-
vestigations of nanowire transistors. The FNR approach is
superior to the Gummel type iteration schemes in convergence
behavior and total solver time. In order to demonstrate the
features of the FNR solver, ultra-short radially-symmetric
silicon nanowire MOSFETs were simulated. We extracted
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channel lengths at VDS = 0.4V .
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Fig. 7. On-current, off-current, and on/off current ratio for different channel
lengths. Simulations are performed for VDS = 0.4V and VGS = ±0.25V .

the deep subthreshold characteristics of these devices, which
cannot be easily extracted by Monte Carlo methods. We also
investigated the scaling behavior of the nanowire transistors,
noting that such studies would be much more expensive if we
were to use other methods such as the NEGF formalism.
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