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Abstract—Practical models of lithographic processes are 

usually empirically calibrated, making their accuracy dependent 

on the total number of samples used to build the models, and more 

specifically on the selection of a representative set of samples for 

calibration. An inadequate number of samples can adversely 

impact model accuracy, but a broadly comprehensive set will 

excessively increase measurement cost. Lithography process 

models based on samples which are picked uniformly from 

populated regions of the original pattern space and are truly a 

representative set will improve model prediction accuracy, as is 

highly desirable for model based optical proximity correction 

(OPC) simulations. We propose a robust approach for sample plan 

selection for lithography process model building using locally 

linear embedding (LLE). The effectiveness of the proposed 

method is verified by simulating some critical layers in 14-nm and 

22-nm complementary metal oxide semiconductor (CMOS) 

technology nodes. Experimental results show that without 

compromising model accuracy, LLE can provide a competitive 

representative sample plan selection in a single shot, in 

comparison with hundreds of random cross-validation 

experiments as an alternative. 
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INTRODUCTION  

Lithography simulation is an indispensable but compute 
intensive task in the process flow of sub-wavelength 
semiconductor manufacturing. The success of lithography 
simulation depends upon the performance of the process models, 
and efficient process models are of paramount importance for 
large mask designs. The problem of intractable computational 
time that would arise from use of truly physical models can be 
avoided by using empirically calibrated phenomenological 
models, such as the CM1 class of models from Mentor Graphics 
[1], which is used as an example in the present work. Although 
empirically calibrated models like CM1 are widely used in the 
industry, they must be accurately calibrated against 
experimental data, and the accuracy of these models relies on 
the representative sample plan selection used for model 
calibration. The importance of the number of data points needed 
for building an empirical model is illustrated in Fig. 1. Simple 
printing behavior can be captured with fewer data points. Fig. 
1(b) shows schematically that a new model can be built with 
reduced data set and acceptable degree of accuracy in 
comparison with true model (shown in Fig. 1(a)) if redundant 
data is used.  However, excessively frugal data collection for 
model building is also not a good practice because it will not be 

able to capture the overall process behavior and will lead to an 
incorrect model as shown in Fig. 1(d). Fig. 1(c) shows the true 
model for a complex process behavior with sufficient data 
points. Hence, selection of a sufficient number of data points for 
model building plays a key role in model performance.  

Another important consideration is how to select a 
representative set of samples for model calibration. Lithography 
process models used for full-chip OPC simulation should be 
robust enough to accurately fit features that span a wide variety 
of shapes and sizes. If the sample plan is limited to only a few 
feature shapes and sizes, the model will generally capture well 
the printing behavior for those geometries, but accuracy is likely 
to be poor for geometries that differ from this narrow calibration 
set. Thousands of samples are required for building a process 
model to support a large variety of designs. Selecting such a 
large number of samples by manually inspecting the individual 
samples is a tedious job and not good practice. Repeated trials 
across multiple splits can be used to assess model performance 
on out-of-training patterns [2]. Different CM1 models can be 
built based on randomly selected sample sets and a robust model 
can be selected out of these models. However, the randomization 

 

Fig. 1: Effect of number of data points when building an empirical model. 
Green solid points are data points for true model, white circles (blue solid 
points) are the discarded (required) data points for new model. Fig. 1(a) and 
Fig. 1(b) represent the case when process behavior is linear whereas Fig. 1(c) 
and Fig. 1(d) represent the scenario of a complex process behavior.  
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approach with a large number of trials does not generate an 
objectively-defined set of representative samples for model 
calibration, and simulation time will also increase.  

We show here that Locally Linear Embedding (LLE) 
algorithm can play an important role in sample selection for 
empirical process model building. LLE extracts information 
about potentially encountered patterns by deriving mutual 
similarity information across a highly oversampled pool of 
candidate patterns (which need not be printed or measured until 
after LLE-based down-selection) in a high dimensional feature 
space, and then mapping these potential samples to low 
dimensional space in a way that preserves the original local 
structure of the samples as closely as possible. From the low 
dimensional space the representative samples can be selected in 
one shot, which helps save computational time.  

CM1 MODELS 

      CM1 models are a class of compact resist models used for 

full chip lithography simulations.  CM1 models use two 

dimensional aerial images of the mask features as input and 

perform (during calibration) an optimization of resist model 

parameters to obtain model functions which provide two 

dimensional "resist response profiles" and an optimum 

threshold value (T).  Note that "resist response profile" does not 

refer here to a prediction of the developed resist relief surface, 

but rather to an abstract response surface resembling a level set 

function whose contour at value T predicts the perimeter of the 

printed feature. During use the constant threshold T is then 

applied on the resist response profile calculated for mask layout 

features, in order to predict the critical dimension (CD) values 

on silicon wafers. The two dimensional resist response surface 

on the silicon wafer, R(x,y), is a  linear combination of different 

modeling terms (Mi).  The general form of these compact 

models can be defined as follows [1]: 

 

R(x, y) =  T    at the print contour                       (1) 

 

R(x, y) ≡  ∑ ci

i

Mi (x, y)                                         (2) 

M(x, y) ≡  [(∇kI∓b(x, y))
n

⊗  Gs,p(x, y)]
1

n⁄

      (3) 

 

Here, ci is the coefficient value for ith modeling term (Mi),   

I(x,y) is the aerial image of the mask pattern, k is the order of 

differentiation, b is a neutralization cutoff constant, G(x,y) is a 

Gauss-Laguerre function kernel, p is the kernel order, s is a 

diffusion length, and ⊗ is the convolution operator. The 

positive and negative signed model terms for non-zero b are 

intended to phenomenologically represent acid and base 

neutralization respectively, and the sign choice indicates 

whether the M function output is truncated from above or below 

at cutoff level b. As is clear from (3), a large number of model 

terms can be obtained from different combinations of the 

parameter values of k and n, so that a CM1 model can take on 

2N – 1 different model forms, where N is the number of terms 

[3]. CM1 is calibrated using commercial code (from Mentor 

Graphics) that employs various search algorithms to explore s 

and b parameter choices and then find the coefficient values  

such that the constant threshold (T) will give a minimum 

difference between measured CD and simulated CD. The 

iterative process of the search algorithm continues until the 

required level of accuracy is achieved or the maximum defined 

limit for iterations is reached.  

LLE ALGORITHM 

   LLE is a dimension reduction technique that attempts to 

discover nonlinear structure in high dimensional data by 

exploiting the local invariance symmetries of derived linear 

reconstructions [4]. The basic idea of the LLE algorithm is 

shown in Fig. 2. First, it finds the neighborhood of each data 

point in the original high dimensional space and represents the 

local neighborhood in the form of a weight matrix by 

minimizing the cost function given in (4). This minimization of 

cost function is subject to two constraints given in (5) and (6). 

It then constructs the low dimensional embedding of the data 

based on the computed weights by minimizing the cost function 

given in (7). 

 

ε(W) =  ∑ | Xi − ∑ WijXj
j

|2                      (4)

i

 

Wij = 0    if Xj is not a neighbor of Xi           (5) 

∑ Wij
j

= 1                                                          (6) 

Φ(Y) = ∑ | Yi −  ∑ WijXYj
j

|2                     (7)

i

 

 
where the Xi are real-valued input vectors with dimension D, Wij 
is the derived weight matrix, and Yi is the output vector of 
dimension  d  (where d < D).   The weights   Wij   represents the      
contribution of the jth data point to the ith  reconstruction.  The 
constrained weights for any particular data point are invariant to  

 

Fig. 2: Basic idea of the LLE algorithm [4]. 
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rotations, rescalings, and translations of that data point and its 
neighbors.  LLE maps its inputs into a single coordinate system 
of lower dimensionality by exploiting adjacency information 
about closely located data points in the form of weight matrix 
and the optimization process does not involve local minima. It 
avoids solving nonlinear optimization equations and is based on 
sparse matrices algebra.    

PROPOSED APPROACH 

   In this paper, we propose a systematic approach of sample plan 
selection for lithography model building using LLE algorithm. 
Individual samples are first represented by their associated set 
of CM1 model term values. LLE algorithm is then used to map 
this high dimensional data to lower dimension.  An example 
two-dimensional output representation of a set of 701 samples 
from a 14nm CMOS technology node is shown in Fig. 3. 
Finding the representative samples in the original high 
dimensional space is a difficult task as it is very hard to visualize 
them with dimension greater than three.  This two dimensional 
map approximately captures the distribution of samples in the 
original high dimensional space. Candidate samples of similar 
shapes and sizes are grouped together, and it becomes much 
easier to uniformly select the representative set of samples due 
the low dimensionality of the output mapping of candidate 
samples. For CM1 model building, calibration and verification 
samples can be selected from this two dimensional graph by 
using appropriate gridding schemes.  

  There can be other data analytics techniques such as clustering 
algorithms that can also be used to categorize the samples into 
different bins [5, 6] but these algorithms are often limited to 
grouping the samples into K clusters and are helpful if separate 
process models are required for each cluster. Classical 
techniques for dimensional reduction, such as principal 
components analysis (PCA) or multidimensional scaling 
(MDS), often fail when nonlinear structure cannot simply be 
regarded as a perturbation from a linear approximation. The 
principal advantage of using LLE is that it attempts to capture 
the true potentially nonlinear structure in high dimensional 
space and preserve that original neighborhood information in a 

low dimensioned embedded structure.  Moreover, LLE can be 
employed without needing measured results for the candidate 
patterns. The proposed approach based on LLE algorithm gives 
a robust solution to select the truly representative set of samples 
for different mask levels in advanced CMOS technology nodes.     

 

SIMULATION RESULTS 

 The proposed method is verified by simulating example 
critical layers in 14nm and 22nm CMOS technology nodes. As 
a control, LLE is compared against random selection of 
calibration data via cross-validation trials that are carried out 
within a larger set chosen by traditional engineering criteria.  As 
usual, the mean model performance in such cross-validation 
trials lets us estimate the impact of restricting the number of 
calibration patterns (as is necessary due to the cost of accurate 
metrology) if the choice of calibration patterns is made in a 
random (unbiased) and unsystematic way. Figs. 4 and 5 show 
CM1 model accuracy results for 100 random models over 14nm 
and 22nm data sets, respectively. Overfitting is a major concern 
with empirical models. An empirical model should not fail over 
the verification set of samples. In Fig. 5, the verification error 
RMS for few of model numbers are approximately twice the 
calibration error RMS value. It represents the fact that for these 
models the candidate samples for model building were not the 
good representative set. To provide a particularly stringent 
benchmark, we also include the performance of the best model 
from the set of 100, as determined with post factum knowledge 
of the verification outcomes, yielding a reference that represents 
an exceptional, statistically extreme level of performance within 
the set of cross-validation splits.  Table 1 shows the simulation 
time taken by CM1 models for 14nm and 22nm data sets. LLE 
based model need one simulation run and it saves the simulation 
time up to 100x compared to model selection from random 
experiment. Fig. 6 shows accuracies achieved for the 22nm data 
set, comparing the LLE based CM1 model against best and 
average outcomes from 100 random models, and against a CM1 
model in which representative samples were chosen by manual 
engineering judgment. In term of accuracy, LLE based model 
shows best results for verification set as compared to other 
approaches. Table 2 summarizes the error RMS results of CM1 
model, for both the 14nm and 22nm data sets. For both data sets 
the LLE based model gives better performance in terms of 
accuracy as considered in the cross-validation approach. 

Fig. 3: LLE output for a 14nm candidate sample set. Samples of similar 

shapes and sizes are grouped together.  

TABLE 1: CM1 SIMULATION TIME FOR 14NM AND 22NM DATA. 

 
14nm Calibration 

Model Time (s) 

22nm Calibration 

Model Time (s) 

Typical random model 3784 1808 

Model selection from  
random experiment 

≈100×3784 ≈100×1808 

Manual sampling based 
model 

3424 1858 

LLE based model 3892 1760 
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CONCLUSION 

LLE-based results achieve the best performance in terms of 
verification accuracy of all the approaches considered.  Our 
simulation results (summarized in Table 1 and Table 2) indicate 
that without compromising model accuracy, LLE can be used to 
select a highly competitive representative sample plan in a single 
shot, bypassing hundreds of random cross-validation 
experiments and therefore saves the computational time. The 
proposed method also has the benefit of being a deterministic 
approach that avoids stochastic uncertainty in representative 
sample plan selection, providing a more systematically assured 
pattern coverage. 
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Fig. 6: Comparison of simulation results for 22nm sample set.  A = Cross-

validation best,  B = Cross-validation average,  C = Manual  sampling,  and  

D = LLE based sampling. 

 

 

Fig. 4: Accuracy results of 100 random CM1 models for 14nm sample set. 

Vertical axis is the RMS error against measurements in each model's 

predictions of the printed widths of a large number of patterns.  Black triangles 

are the error in predicting the printed widths with which the model is calibrated, 
and red circles are the error in predicted dimensions of set-aside verification 

patterns. 

 

 

Fig. 5: Accuracy results of 100 random CM1 models for 22nm sample set. 

(See Fig. 4 caption.) 

 

 TABLE 2: CM1 SIMULATION ERROR RMS (NM) RESULTS. 

 

14nm data 22nm data 

Calibration Verification Calibration Verification 

A 2.68 2.65 2.28 2.24 

B 2.63 2.81 2.34 2.62 

C 2.82 2.61 2.43 2.31 

D 2.75 2.71 2.60 2.02 

 

A = Cross-validation best, B = Cross-validation average, 

C = Manual sampling, and D = LLE based sampling 

 

416




