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Abstract—In this article we develop a mathematical algorithm 

for computing the spatial locations of ionized impurities in 
semiconductor materials using scanning capacitance microscopy 
(SCM) measurements. We show that SCM measurements can in 
principle be used to determine the coordinates of the doping 
atoms in a layer of a thickness equal to the width of the depletion 
region if the noise in the SCM measurements is extremely low. 
The proposed mathematical algorithm is based on computing the 
doping sensitivity functions (i.e. the Gâtaux derivatives) of the 
differential capacitance and using a gradient-based iterative 
method to find the locations of the ionized impurities. 
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I. INTRODUCTION 
Scanning capacitance microscopy (SCM) is often used in 

the semiconductor industry for dopant profiling. The 
conventional procedure to extract the doping concentration is 
to bias the semiconductor in depletion mode and measure the 
differential capacitance of the biasing electrode (probe) as a 
function of the applied voltage [1]. The differential capacitance 
can then be used to determine the average dopant concentration 
at the edge of the depletion region. 

In this article we investigate the possibility to use SCM for 
3-D profiling of discrete ionized impurities in semiconductor 
materials [2]. We show that it is in principle possible to use 
multiple sets of experimental C-V curves and compute the 
spatial coordinates (xi, yi, zi) of the ionized impurities in the 
depletion region, where i = 1,…, N, and N is the number of 
ionized impurities in the depletion region. The larger the 
amount of experimental data the higher is the accuracy of the 
numerical predictions. As far as we know this is the first 
attempt to use SCM to compute the exact locations of the 
dopant atoms in semiconductor materials. All the previous 
attempts were limited to finding the average carrier distribution 
and dopant concentration inside the material, without being 
able to retrieve the individual locations of the impurities. 

To compute the locations of the impurities we need to solve 
the inverse problem, in which we compute the doping 
concentration, D(r), from the experimental C-V curves. This 
problem is particularly difficult to solve using heuristic 
optimization techniques because these techniques require a 
large number or trial-and-error simulations. For instance, let us 
consider the simplified case of a semiconductor material 

discretized in 104 nodes (for example using a finite element or 
finite difference mesh). The total number of combinations in 
which N dopant atoms can be arranged in this mesh is of the 
order of 104N, which require a prohibitively large number of 
simulations even for a small number of impurities, N. For a 
similar reason, traditional evolutionary algorithms such as 
genetic algorithm are also unpractical for atomistic dopant 
profile. The only choice is to develop a non-heuristic 
algorithm, which requires a small number of device 
simulations. The algorithm presented in this article is based on 
the estimation of doping sensitivity functions and uses a 
gradient-based iterative method to find the locations of the 
dopants.  

The experimental setup is relatively similar to standard 
scanning microscopy and is presented in Fig. 1. The probe is 
moving above the surface of the semiconductor and is not in 
direct contact with the semiconductor. The space between the 
probe and semiconductor can be filled with the native oxide of 
the semiconductor. If the measurements are made in high 
vacuum one can also create a small gap between the probe and 
the semiconductor, which separates the two materials. The 
small-signal capacitance is measured as a function of the bias 
voltage between the probe and the substrate and is used to 
compute to doping concentration.  

II. COMPUTATION OF THE DOPING SENSITIVITY FUNCTIONS OF 
THE DIFFERENTIAL CAPACITANCE 

The doping sensitivity function of a parameter is defined as 
the Gâtaux differential of that parameter in the directions of 
possible doping variations. If C is the differential capacitance 
of the probe and we consider an infinitesimally small doping 
variation ( )Dδ r , the variation of the differential capacitance 
can be expressed as a function of the doping sensitivity 
function, ( )γ r , by means of the Riesz representation theorem 

 ( ) ( )C D dδ γ δ
Ω

= � r r r  (1) 

where Ω  denotes the region of the semiconductor material. 
Since ( )γ r  measures the sensitivity of device parameters (in 
our case the sensitivity of the differential capacitance) to 
doping variations, this function is instrumental in the study of 
random doping fluctuations and for device optimization. Next, 
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we summarize the technique for the computation of ( )γ r . For 
more details about the derivation of the final equations and 
numerical implementation we recommend reading [3]. 

  

Fig. 1. Electrostatic potential in an “atomistically” generated semiconductor. 
The probe is scannnig the surface of the semionductor in the x and y 
directions. 

Let us denote the discretized transport equations in the 
semiconductor in vector form as 

( ) ( )1 1 1 1,..., , ,..., ,..., , ,..., , 0
k

n m k n mdI x x D D F x x D D V
dt

+ =  (2) 

where ix  and iD  denote the state variables and the doping 
concentration at the mesh point i, and V is the bias voltage. 
Superscript k denotes the index of each equation. Functions kI  
come from the discretization of electron and hole concentration 
free terms in the continuity equations, while kF  come from 
the discretization of the source and divergence terms in these 
equations. The discretized doping sensitivity function of the 
differential capacitance can be computed as  

 
2 2i l n k l m k

j i l m n k j m j k

x G x F G x FC
VG x x F D x D G

γ � �∂ ∂ ∂ ∂ ∂ ∂ ∂= − +	 
 ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �
 

 
2 2i k i l k

i k i l j j

x F x F FC
G V x F D V D

� �∂ ∂ ∂ ∂ ∂− − +	 
∂ ∂ ∂ ∂ ∂ ∂ ∂� �
 (3) 

where k k kG j I Fω= +  and iC  are coefficients that can be 
obtained by writing the differential capacitance in differential 
form as i

iC C x Vδ δ= . In the previous equation we have 
used the Einstein summation convention. Notice that in order 
to compute the doping sensitivity function of the differential 
capacitance one needs to evaluate the second order derivatives 
of the transport equations. A simplified version of eq. (3) can 
be found in [4, 5]. 

III. INVERSION ALGORITHM 
In this section we summarize the inversion algorithm for 

computing the doping distribution from the experimental 
values of the differential capacitance. For this purpose let us 
denote the experimental values of C by ( )exp

iC , where subscript 

i is used to index each data point. Values ( )exp
iC  can belong to 

the same C-V curve or to C-V curves measured with the probe 
situated at different locations above the surface of the 
semiconductor. In general, we need to have a large number of 
data points measured at different positions above the area 
where we need to estimate the doping locations. Due to 
symmetry considerations, in the case of 2-D simulations, one 
needs to measure the C-V curve in at least two different 
locations above the semiconductor; in the case of 3-D 
simulations, one needs to measure the C-V curves in at least 
three different locations in order to extract the 3 spatial 
coordinates.  

To compute the doping concentration, we start with an 
initial doping profile ( ) ( )0D r  and update it iteratively using 
the following equation 

 ( ) ( ) ( ) ( ) ( ) ( )1k k kD D Dε−= + Δr r r  (4) 

where k denotes the iteration number and ε  is a relaxation 
parameter. The optimal change in the doping concentration, 

( ) ( )kDΔ r , can be estimated from eq. (1), which implies 

 ( ) ( ) ( ) ( ) ( )exp k k
i i iC C D dγ

Ω
− ≈ Δ� r r r  (5) 

where ( )k
iC  is the computed value of the differential 

capacitance and ( )iγ r  is the doping sensitivity function 
computed under the same bias point and probe position as the 
experimentally measured value of ( )exp

iC .  

 As discussed in[2], one could in principle solve integral 
equation (5) for ( )kDΔ  and, then, replace it in eq. (4) to update 
the doping concentration. However, in order to improve the 
convergence rate of the algorithm as well as the robustness of 
the algorithm under experimental noise, it is better to expend 

( ) ( )kDΔ r  as a linear superposition of a given set of basis 
functions ( )iΓ r  and look for solutions of (5) in the form 

 ( ) ( ) ( ) ( )1

Mk k
i ii

D α
=

Δ = Γ�r r  (6) 

where M is the number of basis functions and iα  are the 
superposition coefficients. These coefficients can be computed 
by solving the following system of equations using linear least 
squares technique 

 ( )
,1

M k
i i j ji

Cα γ
=

= Δ�  (7) 

where ( ) ( ),i j i j dγ γ
Ω

= Γ� r r r . In the case of “atomistic” 

doping profiling it is convenient to choose ( ) ( )i iδΓ =r r - r , 
where δ  is the Dirac-delta function. In this case ( ),i j j iγ γ= r  
and coefficients iα  can be computed by solving 

( ) ( )
1

M k
i j i ji

Cα γ
=

= Δ� r . 
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IV. NUMERICAL EXAMPLES 
To test the inversion algorithm presented in the previous 

section we have implemented the algorithm numerically in 
RandFlux, which a device simulator specifically design for 
finite element optimizations using adjoint space techniques. In 
order to avoid numerical problems related to the dynamic mesh 
generation when the probe is moving on the surface of the 
semiconductor, we consider a set of three metallic probes 
situated at approximately 17.5 nm from each other and 1 nm 
above the semiconductor surface. The movement of the SCM 
tip is modeled by applying different potentials on the probes. 
To compute the complex impedance, Z, we superimpose a 
small-signal a.c. voltage, v, on the d.c. bias and compute the 
a.c. current, i, using perturbation theory. The differential 
capacitance is computed as ( )ImC Z ω= . The way in which 
the differential capacitance is defined does not change the 
numerical algorithm as long as both the “experimental” 
procedure and the computer simulations use the same method.  

The semiconductor material was modeled by placing p-type 
impurities at random locations inside the simulation domain. 
Once the material was generated, the "experimental" C-V 
curves were determined by applying a d.c. bias on each probe 
and keeping the other probes at zero potential. The three 
“experimental” C-V curves generated in this way are 
represented by continuous lines in Figs. 2(a)-(c), respectively. 
The initial placement of the impurities is shown in Fig. 3(i). 
The iterations were started by starting with an undoped 
semiconductor, see Fig. 3(a). The doping sensitivity functions 
for each probe is represented in Figs. 3(b)-(d) at a bias of -1 V. 
Due to the symmetry of the system, the doping sensitivity 
functions are symmetrical for Probe 1 and Probe 3. The most 
sensitive regions to doping variations are the regions under the 
probes. For this reason, the SCM technique presented in this 
work is able to find the ionized impurities only in the proximity 
of the metallic probes (i.e. in the depletion region).  

The values of the differential capacitance used in solving 
the inversion problem, ( )exp

iC , are denoted by symbols on the 
continuous lines presented in Fig. 2. Only 24 such points have 
been used in the inversion. Using more “ experimental” points 
from the same C-V curve makes the equations in system (7) to 
become almost linearly dependent and increases the numerical 
instability of the algorithm. In practice, one should collect data 
from a larger number of “experimental” C-V curves and use it 
when solving the inversion problem. To update the doping 
concentration we consider a set of 15 Dirac-delta functions 
distributed approximately uniformly throughout the 
semiconductor (notice that the number of base functions should 
be smaller or equal to the number or “experimental” points, so 
system (7) has unique solution). 

The C-V curves computed for the undoped semiconductor 
are represented with dash line “Initial guess” in Figs. 2(a)-(c) 
for each probe, respectively. The computed differential 
capacitance at different iterations is represented in Figs. 2(a)-
(c) with dash lines. After 39 iterations the algorithm converged 
to the "experimental" values of the capacitance. The total 
number of iterations depends on the initial guess, the relaxation 
parameter (ε ), and the number and distribution of impurities 

in the semiconductor. Figs. 3(f)-(h) present the doping 
sensitivity functions after iteration 13, while Figs. 3(j)-(l) 
present the sensitivity functions after iteration 39, when 
convergence was obtained. In both cases, since the doping 
configuration is not symmetric with respect to the vertical axis, 
the doping sensitivity functions for Probes 1 and 3 are also 
asymmetric.  
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Fig. 2. Differential capacitance of the three probes comptued at different 
iterations. The continuous lines show the "experimental" values of the 
differential capacitance. The iterations converge after 39 iterations to the 
doping configuration shown in Fig. 3(i). 
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Fig. 3. Doping profiles and doping sensitivity functions comptued after the 
first iteration (a)-(d), after iteration 13 (e)-(h), and after iteration 39 (i)-(l).The 
intial guess for the doping profile was an undoped structure (a). The algorithm 
converged towards the doping profile shown in (k) after 39 iterations. The 
probe for which the sensitivity function is plotted is indicated in each figure. 

 

Fig. 4. Examples of simulations for different atomistic profiles. The 
inversion algorithm converged in each case to the dopant distribution shown 
in each figure. 

We have also tested our inversion algorithm using different 
doping configurations with different ionization charges (in 
multiples of q). Fig. 4 shows a few examples that we have 
tested. The number of iterations after which the original doping 
configuration is obtained is shown on each figure. 

V. CONCLUSION 
We have developed a numerical algorithm to extract the 3-

D coordinates of ionized impurities in semiconductor materials 
using SCM measurements. The algorithm was verified 
numerically using a modified 2-D setup, in which the C-V 
curves are measured at 3 different locations on the surface of 
the semiconductor. Although the cases studied in this article 
was much idealized and, in reality, the C-V measurements are 
subject to noise and other experimental errors, it is shown that 
if the differential capacitance is measured precisely, these 
measurements can be potentially used for the "atomistic" 
profiling of ionized impurities in doped semiconductors. 
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