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Abstract—Germanium can be transformed from an indirect
bandgap material to a direct bandgap material by applying strain.
Unstrained Ge has an indirect bandgap of 0.66eV (at L point)
and a direct bandgap of 0.8eV [1]. When strain is applied, the
band structure of germanium will be altered. When the strain
is tensile, both the indirect and the direct bandgaps tend to
decrease. Under certain strains, the direct bandgap will be pushed
even below the indirect bandgap, at which point, germanium
becomes a direct bandgap material. The value of the bandgap
when Ge transforms from an indirect to direct semiconductor
upon the application of strain is named the Bandgap Transition
Point (BTP), and the required strain is named STP (Strain at
Transition Point). Previous research has been done on uniaxial
and biaxial strained germanium on the conventional orientations.
In this work, calculations are made on the effect of applying
tensile stress in arbitrary orientations based on nonlocal empirical
pseudopotential method (EPM) [2] [3]. We also use cubic spline
interpolation of the atomic form factors [4] [5], as well as the rules
for strain translation [6], to determine how the Indirect-Direct
transformation phenomenon of germanium changes with respect
to virtually any orientation of the crystal planes. In addition, we
calculated the optimal orientation and the effect that departure
from this optimal orientation has on the bandgap.

I. INTRODUCTION

Germanium has re-drawn attention in the realm of photo
detecting in the Short Wave Infrared (SWIR) range because
of its advantage of being well suited to be integrated into a
CMOS process, as well as having direct bandgap of 0.8eV
and indirect bandgap of 0.66eV, with the difference between
the two being only 0.14eV. Former research has pointed out the
band structure of germanium can be altered by applying strain
[1]. Additionally, the direct bandgap and indirect bandgap react
differently to the applied strain. Previous work has been done
to reveal the relationship between germanium band structure
and the applied strain, that tensile strain (whether uniaxial,
biaxial or hydraulic) will help decrease the difference between
the direct and indirect bandgap, and eventually transform
germanium into a direct bandgap material. Such conclusion
has been mainly made towards most common orientations of
the germanium material. However, considering the possible
error happening during the manufacturing process, there may
be shifting of the strain applied direction or plane. In this paper,
simulations have been conducted to look into the relationship
between the bandgap transition point (BTP) (when germanium

turns into direct bandgap material at what strain) and arbitrary
orientation (plane for biaxial strain and direction for uniaxial
strain) of the applied strain.

II. EMPIRICAL PSEUDOPOTENTIAL METHOD

The whole method starts with a plane wave expansion,
from which the total wave function solution of the Schrödinger
Equation is taken to be sum of a series of orthogonalized
plane wave functions. Under the expansion, the differential
Schrödinger Equation is transferred into an algebra equation
expressed as Equation (1) [3]:


[
k2(~k + ~G)2

2m

]
+
∑
~G′

V (~G− ~G′)

∑
~G′

V NLps (~k, ~G, ~G′)

 = E · U(~G) (1)

Where:

~G is the vector of the reciprocal lattice points

V (~G) is the Fourier transformation coefficient of the
periodic nuclei potential)

U(~G) is the Fourier transformation coefficient of the
Bloch function)

V NLps is the inclusion of the nonlocal effects of dif-
ferent orbitals feeling different pseudopotential within the
core region.

For elemental crystals like germanium and silicon, the
Fourier transformation coefficient of the potential V(−→G ) is
expressed as:

V (~G) = cos
~G · ~rb

2
Vs( ~G) (2)

Where:
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TABLE I. COEFFICIENT FOR LOCAL PSEUDOPOTENTIAL METHOD AND
FOR NONLOCAL COMPENSATION [2] [3]

local coefficient:Form factor(Ry)
V (

√
3) V (

√
8) V (

√
11)

-0.221 0.019 0.056
Nonlocal coefficient

α0(Ry) β0 A2(Ry) Radii(A)
R0 R2

0 0 0.275 0 1.22

~rb is the vector of the basis of the germanium lattice

Vs(~G) is the form factor, indicating the potential in
the reciprocal space.

By choosing N bases of the wave function (the number
of V ( ~G)′s), Equation (1) will be further transformed into a
matrix equation, with the size of N×N. To restore the real
wave function, number N would be extremely huge due to
the rapid changing atomic potential at the core region, which
results in a high calculation expenses.

However, by replacing the rather rapidly changing all-
electron potential with a smooth pseudopotential, the number
of wave planes needed will be greatly reduced, which, to be
more specific, will be 51 in total in our case with |~G|2 ≤ 11.
In Table I, the form factors needed to construct the valence
electron band structure are listed along with the coefficients
for nonlocal compensation.

III. STRAIN COORDINATE SYSTEM TRANSFORMATION

From the view of a more practical consideration, the types
of strain that are usually applied are 1) uniaxial: applying strain
along a certain direction, typically in a nanowire structure and
2) biaxial: applying strain on a certain plane, typically in a
deposited film. For crystals with a cubic lattice structure like
germanium, the two basic strain types can be simply expressed
by a diagonal tensor, as in:

¯̄ε′(x′y′z′) =

(
εx′x′ 0 0

0 εy′y′ 0
0 0 εz′z′

)
(3)

The coordinate system used in Equation (3) (expressed as
x′y′z′) is considered as arbitrary, which is not necessarily
aligned with the one used in the statement in the previous
section (expressed as xyz, whose x axis is aligned with [100],
y aligned with [010] and z aligned with [001]). Therefore,
a coordinate system transformation is needed to project the
initially applied strain under x′y′z′ onto xyz. In other words,
we already have ¯̄ε(x′y′z′), and we need to obtain ¯̄ε(xyz).

To achieve this we apply a linear transformation tensor T ,
which allows us to work in the coordinate systems where the
axes are aligned with the family of 〈100〉 directions. Tensor T
is expressed in Equation (4):

x′y′z′ = T · xyz (4)

The connection between stress tensors ¯̄σ (xyz) and
¯̄σ
(
x′y′z′

)
is then built by the expression:

¯̄σ (xyz) = T
T
· ¯̄σ
(
x′y′z′

)
· T (5)

Under both coordinate systems, the strain and stress vectors
obey the Hooke’s Law, as in:

~σ(x′y′z′) = ¯̄c(x′y′z′) · ~ε(x′y′z′) (6)
~σ(xyz) = ¯̄c(xyz) · ~ε(xyz) (7)

Therefore, through Equation (6) and Equation (5), we are
able to get the stress vector ~σ(xyz). Then through Equation
(7), the stress is ultimately transformed into the strain vector
~ε(xyz).

In Equation (6) and Equation (7), ¯̄c(xyz) is the stiffness
matrix under xyz, whereas ¯̄c(x′y′z′) is the stiffness matrix
under x′y′z′, whose terms can be expressed in terms of
elements in ¯̄c(xyz) [6]:

c′11 = c11 + ce(l
4
1 +m4

1 + n41 − 1) (8)
c′12 = c12 + ce(l

4
1 +m4

1 + n41 − 1) (9)
c′44 = c11 + ce(l

4
1 +m4

1 + n41 − 1) (10)
c′14 = c11 + ce(l

4
1 +m4

1 + n41 − 1) (11)

Where:

ce = c11 − c12 − 2c44
l1 = cos(xx′), l2 = cos(xy′), l3 = cos(xz′)

m1 = cos(yx′),m2 = cos(yy′),m3 = cos(yz′)
n1 = cos(zx′), n2 = cos(zy′), n3 = cos(zz′)

Also, c′11 is analogous to c′22 and c′33. c′12 is analogous to c′13
and c′23. c′44 is analogous to c′55 and c′66. While c′14 is analogous
to c′15, c′16, c′24, c′25, c′26, c′34, c′35, c′36, c′45, c′46 and c′56

During the projection process, the conversion between the
tensor form and the vector form of a certain stress or strain is
used wherever necessary.

IV. STRAINED LATTICE AND RECIPROCAL LATTICE

After the projection of the strain tensor ¯̄ε′ under x′y′z′ onto
¯̄ε under xyz, the primitive lattice vector is distorted as follows:

~ai
′ = (¯̄1 + ¯̄ε) ∗ ~ai (12)

Where: i = 1, 2, 3.

The new reciprocal lattice vector will be distorted as well
by:
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TABLE II. INTERPOLATION PARAMETERS FOR CONTINUOUS V (|G|)
VS. |G| CURVE

Parameter Value (in atomic value)
C1 23.31608
C2 2.50648
C3 0.63901
C4 0.97655
C5 5.0
C6 0.3

~G1
′

= 2π
~a2

′ · ~a3′

~a1
′ ·
(
~a2

′ · ~a3′
) (13)

~G2
′

= 2π
~a3

′ · ~a1′

~a1
′ ·
(
~a2

′ · ~a3′
) (14)

~G3
′

= 2π
~a1

′ · ~a2′

~a1
′ ·
(
~a2

′ · ~a3′
) (15)

(16)

For the strained germanium lattice, the discrete form fac-
tor is expanded into a continuous curve and the values are
interpolated using cubic splines by the expression [7].:

V (|~G|) =

1

Ω

C1(|~G|2 − C2)

exp
[
C3(|~G|2 − C2)− 1

] [1

2
tanh(

C5 − |~G|2

C6
) +

1

2

]
(17)

where:

Ω is the atomic volume of the primitive unit cell.

C1 − C6 are interpolation parameters to fit the local
form factor values, which are listed in Table II [7]. Adjust-
ment of the interpolation parameters has been made to fit
the values listed in Table I.

V. SIMULATION RESULTS AND ANALYSIS

As was mentioned before, because of the applied strain,
the lattice, as well as the reciprocal lattice, will be distorted.
Therefore, the originally equivalent high symmetry points in
k-space may no longer be equivalent under the influence of
the strain. To be more specific, the eight L points in the first
Brillouin Zone may have different energy levels under the
influence of the applied strain. In Figure 1, we can see the non-
equivalence of the L points in the conduction band, with the
case of biaxial strain on {111} plane having a 2:6 split between
the eight L points in the conduction band (the upper right L
valley is lower than the other three), and in the case of biaxial
strain on {110} they have a 4:4 split (the antidiagonal two L
valleys are lower than the diagonal two). Furthermore, only
the lowest of the eight points is considered the upper border
of indirect bandgap. Therefore, a thorough investigation of all
eight L points in the conduction band is necessary to find out
the real, direct-indirect transformation point for any specific
strain case.

Fig. 1. Contour of conduction band on the plane in the reciprocal space
passing through all four L points with kz = π/a. Left: biaxial strain on {111}
plane; Right: biaxial strain on {110} plane

Fig. 2. Remaining Energy Band (BTP) (Left) and Required Strain (STP)
(Right) at the transition point with respect to different orientations of the
plane under biaxial strain. The value of contour curve represents the value of
the BTP (left) or STP (right) at that point. Each point in the graph is a specific
orientation. The center of the graph has Miller Index of (001). The corners are
of the {111} family and the mid-point of the sides are of the {110} family.

Fig. 3. BTP (Left) and STP (Right) with respect to different orientations
of the crystal direction under uniaxial strain. The center of the graph is the
direction with Miller Index of [001]. The corners are of the 〈111〉 family and
the mid-point of the sides are of the 〈110〉 family.

Based on the method described above, Calculations of
germanium under biaxial and uniaxial strain under arbitrary
orientation are conducted, and the simulation results are shown
in Figure 2 (for biaxial strain) and in Figure 3 (for uniaxial
strain). From the graphs, one of the primary items that can
be identified is the optimal orientation for each type of strain.
This optimal orientation is defined as the one along which
the achieved bandgap transition point has the largest resulting
direct gap, and requires the least of strain.

The simulation results shown in Figures 2 and 3 clearly
show the optimal orientations for both biaxial and uniaxial
strain cases, {100} plane (with BTP of 0.43eV and STP of
2.3%) and 〈111〉 direction (with BTP of 0.41eV and STP of
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Fig. 4. BTP (left) and STP (right) under biaxial strain. The middle is the
optimal plane {100}, to the left of the graph towards {111} and to the right
towards {110}.

Fig. 5. BTP (left) and STP (right) under uniaxial strain. The middle is the
optimal direction 〈111〉, to the left of the graph towards 〈100〉 and to the
right towards 〈110〉.

3.4%), respectively. Additionally, the region with BTP of 0eV
and the region with STP of more than 0.035(3.5%) in Figure
2 and 0.05(5%) in Figure 3, respectively, represent that under
such orientation, no amount of strain can achieve the direct-
indirect transformation before either the bandgap hits zero, or
the conduction band at one or more of the eight L points is
pushed below the valence band at the Γ point. From roughly
judging Figure 2 and Figure 3, the BTP and STP properties
are highly sensitive to the orientation. To consider practically,
this means that any tilting from the optimal orientation could
possibly cause a significant difference on the requirement of
achieving the direct-indirect transformation and on the amount
of remaining bandgap. In addition to Figure 2 and Figure 3,
Figure 4 and Figure 5 with more details are added showing
the influence on BTP and STP when the material is tilted from
the optimal orientations.

Figure 4 and Figure 5, respectively show how the direct-
indirect transformation of germanium changes when the orien-
tation of the applied strain is tilted from its optimal position.
In both biaxial and uniaxial cases, as was mentioned before,
the transformation property is quite sensitive to the tilting. For
applying biaxial strain, when tilting away from the optimal
orientation {100} towards {111}, BTP decreases and STP
increases drastically, with average slopes of 27.5meV/degree
and 0.137% (strain)/degree and a cutoff angle of about 15.800,
beyond which there is no transition at any amount of strain.
When tilting towards {110} , the slopes for BTP and STP are
only 14.8meV/degree and 0.060%(strain)/degree, respectively.
However, on this tilting direction, the material is expected to
always have transformation at sufficient amount of strain.

Similar results are obtained for uniaxial strain, when tilting
from the optimal direction 〈111〉 towards 〈100〉, the average
slopes of BTP and STP are 33.7meV/degree and 0.150%
(strain)/degree, with cutoff angle of about 12.10. While tilt-
ing towards 〈110〉, the slopes of BTP and STP are about
21.0meV/degree and 0.119% (strain)/degree, with the cutoff
angle being 17.60. Also at 〈100〉, transition is observed during
simulation. However, this occurs at a relatively very high strain
of about 9% and is extremely sensitive to any tilting from the
orientation, behaving as an isolated point in the graph.

Both biaxial and uniaxial strain cases share the similarity
for the Indirect-Direct transformation phenomenon around
the optimal orientation, which is having a relatively high
sensitivity on the error of the alignment with respect to the
optimal orientation. Nonetheless, in the biaxial strain case, if
the applied plane is not chosen as the optimal {100} plane,
but the {110} plane, the transition curve of BTP and STP, as
is shown in Figure 4, is smooth and flat, indicating a rather
high stability against the possible error of the alignment along
this specific orientation.

VI. CONCLUSION

In conclusion, germanium’s Direct-Indirect bandgap trans-
formation phenomena under uniaxial and biaxial strain are
investigated under arbitrary orientations. Calculations agree
with previous research on the choice of optimal orientation
for both strain cases, and in addition, we provide results
about the sensitivity of the transformation property when the
orientation of applied strain is tilted away from the optimal
orientation. Both biaxial and uniaxial strain cases show high
sensitivity against the alignment error. Furthermore, in the
biaxial strain case, if the strain applied plane is chosen as
{110}, a high tolerance is expected against the alignment error,
which suggests a possible practical engineering application.
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