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Abstract—To study the High-k dielectrics on alternate 
semiconductor materials for transistors a modeling platform has 
been developed which implements a faster 1D Schrodinger-
Poisson along with trap models. A fitting algorithm is used for 
the extraction of trap profiles which fits the model 
capacitance/admittance to the measurements in the least square 
sense. The extraction is illustrated on a subnanometer EOT 
HfO2/SiGe/Si heterostructure stack. 
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I. INTRODUCTION 
With advances in epitaxial growth and high-k dielectric 

deposition technics, combinations of alternate channel 
material and high-k dielectric have emerged as plausible 
options for next-generation logic transistors. However such a 
combination can only be adopted if the high-k/alternate 
channel semiconductor interface quality is excellent, i.e. 
comparable to the best Si/SiO2 interface. Capacitance (and 
conductance) measurements on metal-oxide-semiconductor 
(MOS) capacitors are ubiquitously used for quick and 
economical evaluation of the high-k/alternate channel 
semiconductor interface. However, the extraction of interface 
state density over the entire bandgap from MOS capacitor 
measurements still remains a challenge. We have developed 
an integrated simulation platform to aid the characterization of 
high-k/alternate channel semiconductor interfaces.  An 
efficient self-consistent Schrödinger-Poisson solver yields the 
band bending, carrier densities and the (ideal) capacitance-
voltage (C-V) characteristics of these complex stacks; 
equivalent circuit based trap models are then used to study 
their frequency dispersion. Finally, a novel interface trap 
extraction methodology has been developed and illustrated on 
ultrathin effective oxide thickness (EOT) MOS capacitors. 

II. IDEAL CV OF HETEROSTRUCTURE STACKS 
The implementation of the simulator follows Wang et al.[1] 

and makes use of Accelerated Anderson Mixing for faster 
convergence. The Poisson-only C-V simulations, performed 
using a Newton-Raphson loop, are expectedly the fastest (see 
Table 1). The unavailability of an exact Jacobian in the 
Schrodinger-Poisson case necessitates Accelerated Anderson 
Mixing to reduce the number of iterations. Table 1 provides the 

timing information of the solver on Intel® Xeon® 2.6GHz 
processor.  

In the SiGe channel gate stacks where a thin layer of SiGe 
is epitaxially grown, a built in potential is developed across the 
isotype SiGe/Si heterojunction. This built in potential is 
evaluated by applying the Neumann boundary conditions, i.e. 
making external electric field zero at the device boundaries. 
This allows the semiconductor side of the capacitor to be 
charge neutral; we have defined this as the flat-band condition. 
When the metal-Si work function difference is zero, this 
condition appears at zero gate voltage.  

TABLE I.  TIMING CONSIDERATIONS OF THE SIMULATOR 

 Poisson only Schrodinger 
Poisson 

Iterations at 
flat-band 

3-4 11 

Iterations at 
accumulation 

4-5 22 

Time per 
iteration (sec) 

0.022 0.33-0.41 

 

III. INTERFACE TRAP EXTRACTION 
We adopt the interface trap model from Nicollian and 

Brews [2] and the border trap model of Yuan et al. [3]. Though 
our platform incorporates the border trap model, it is not 
discussed in the rest of this paper since the SiGe/Si MOS 
capacitor data that we have modeled here does not seem to 
require it. 

Interface state density is the critical parameter in the 
evaluation of the dielectric/semiconductor interface quality, 
and the capture cross section is an important auxiliary 
parameter in its extraction. Both these parameters are material 
and process dependent and may be extracted from MOS 
capacitor characterization. Temperature-dependent admittance 
measurements, proposed by Martens et al. [4] are slow and 
require specialized characterization equipment. In our 
methodology we try to illustrate extraction over the entire 
semiconductor bandgap at room temperature. 
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Figure 1 summarizes our interface trap d
methodology. The ideal high frequency C-V
calculated by turning off the minority c
completely – this is achieved by modifying 
Poisson loop. The ideal HFCV is matched t
and minimum capacitance measured at the hig
(> 1MHz) through tuning of the high-k and
thickness and permittivity, and doping d
semiconductor layers. The material paramet
taken from Sant et al. [5].  

Next, the band-bending and carrier densities
mapping high-frequency (1MHz) CV to the id
will give identical capacitance for the sam
since the traps in the former only result in 
with no contribution to the ac capacitance. T
the 1MHz C-V is free of ac trap response; if n
one of the sources of errors in the extraction 
density and capture cross section (to be dis
later). 

The interface states density and capture c
parameterized as:  ܦ௧ ൌ ௧ܦ   ܣ expሺെ൫ܧ െ ݉൯ߪ ൌ ߪ  exp ሺെܧߙ/݇ܶሻ or   ߪ ൌ ߪ   ఙೌೕܣ expሺെ൫ܧ െ ݉ఙೌ
where ܣ,ఙ, ݉,ఙ, ,,ఙܥ ,௧ܦ ,ߙ  are fittinߪ

Fig. 1. Interface trap extraction methodo
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IV. RESULTS AND D

Fig. 2(a) shows the ideal HFCV c
measurements. For multi-frequency
dispersion in the accumulation;
resistance contribution, which we c
stack comprises:  HfOଶ/SiOଶ  (Si.ହହGe.ସହ/Si with a Si cap near 
non-saturating behaviour observed 
capacitors with very thin insula
Schrodinger-Poisson simulator. A
tuning of parameters suggest that  ߳
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of some hafnium silicate. Fig. 2(b) 
InGaAs MOSCAP CV matched to 
by Yuan et al. [3]. As non-parabolic
Schrodinger-Poisson, the EOT was 
than reported value of 3.3nm. 
platform can be extended at pr
modelling and extraction of i
heterostructure MOS capacitors. 

Fig. 2(a). Ideal HFCV (solid blue) simula
1.75nm Si cap, correctly modeling the non-s
in accumulation, as seen from 1MHz CV dat
blue) and HFCV (solid red) of InGaAs MOS
simulation data (circles) [3]. 

We now illustrate the extraction
multi-layered gate stack on a SiGe/S
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Fig. 3 (a).  MOS capacitor stack, SiGe layer contains 30
CV showing larger frequency dispersion in the de
frequency dispersion in accumulation (c). Measured GV. 

 

Fig. 4 (a). Fitting of capacitance using 4 Gaussians for
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is shown in Fig. 5(a). Next, we treat this multi-frequency C-V 
as measured data and perform ܦ௧ extraction as laid out in Sec. 
III. Two cases are studied here: at the comparison step in the 
extraction methodology (c.f. Fig. 1), the high-frequency C-V 
that is assumed to be free of ac trap response is 1MHz in the 
first case, and, 10MHz in the second. From Fig. 5(c), it is seen 
that the second accurately recovers ܦ௧  and ߪ  whereas the 
first is only accurate in the lower half of the bandgap; we may 
note that this is also what one gets with the conventional 
conductance method of Nicollian and Brews [2] for p-type 
capacitors. This suggests that high frequency measurement (10 
MHz) could extend the room-temperature extraction of ܦ௧  
and ߪ over the entire bandgap.  

V. CONCLUSION 

We have developed a MOS capacitor modelling platform 
that integrates a Schrödinger-Poisson solver with trap models. 
It is seen to capture physico-chemical effects essential to high-
k on heterostructure capacitors, enable extraction of trap 
density profiles, and suggest limitations of prevailing 
characterization techniques. While this platform has been 
largely calibrated using Group-IV heterostructure capacitors 

so far, it can be applied similarly to III-V heterostructure 
capacitors. A friendly user-interface has also been developed 
and will be provided online. 
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