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Abstract—A deterministic solver based on the Fourier har-
monics expansion of the Boltzmann equation is applied to the
case of GaAs devices including polar optical phonon scattering
and the Pauli principle. The system of the Poisson, Schrödinger
and Boltzmann equations is solved self-consistently. Results are
presented for a double-gate nMOSFET which shows a velocity
overshoot in the channel region and electrons lose their energy
by an optical phonon cascade.

I. INTRODUCTION

As semiconductor device sizes shrink below 100nm, ve-
locity overshoot starts to dominate the device behavior. This
effect can not be predicted by the conventional drift-diffusion
model and subsequently the drain current is underestimated in
transistors [1]. The Boltzmann equation describes the carrier
transport in phase space and gives more accurate information
about the device operation than the drift-diffusion model or
any extensions thereof which are derived as moments of the
Boltzmann equation [2]. In recent years, new methods have
been developed to solve the Boltzmann equation deterministi-
cally without the stochastic errors and the transiency associated
with Monte Carlo simulations [3], [4]. A deterministic solver
for silicon devices based on a self-consistent solution of
the Poisson equation (PE), Schrödinger equation (SE) and
Boltzmann equation (BE) with a Fourier harmonics expansion
of the k-space for electrons has been successfully developed
in Ref. [5]. In GaAs devices, electrons interact with the lattice
predominantly by polar optical phonon scattering due to the
polar nature of the bonding between Ga and As atoms. Its
Fourier harmonics expansion is much more complicated than
that of the non-polar phonon scattering mechanisms in silicon.

In this work, we present a deterministic solver based on
the Fourier harmonics expansion for a double-gate nMOSFET
with a GaAs channel which includes the Pauli principle and
polar optical phonon scattering.

II. APPROACH

The scattering term Sν{f} of the BE is given by the single
particle scattering integral including the Pauli principle:

Ŝν{f} =
1

(2π)2

∑
ν′,η,σ

∫ {
(1− fν(y,k))Sν,ν

′
η,σ (y,k,k′)fν

′
(y,k′)

−(1− fν
′
(y,k′))Sν

′,ν
η,−σ(y,k′,k)fν(y,k)

}
d2k′, (1)

where the transition rate Sν,ν
′

η,σ is given by:

Sν,ν
′

η,σ (y,k,k′) = cν,ν
′

η,σ (y,k,k′)δ(εν(k)− εν
′
(k′)− σ), (2)

where η runs over all scattering mechanisms, c is the transition
coefficient from the initial state with the wave vector k′ in the
subband ν′ to the final state with the wave vector k in the
subband ν with a constant energy transfer σ = ±h̄ωη . The
projection of the scattering term onto Fourier harmonics and
additionally onto an equi-energy surface is expressed as [6]

Ŝν{f} → Ŝνm(y, ε̃) =
1

(2π)2

∫
Ŝν{f}δ(ε̃− ε̃ν(y,k))Ym(φ)d2k.

(3)

Afterwards, the kinetic energies are transformed into total
energies H by the H-transformation [4]. The scattering term is
split into in- and out-scattering. Projection of the in-scattering
term yields:

Ŝν,inm (y,H) =
∑
ν′,η,σ

∞∑
m′,m′′=−∞

cν,ν
′

m′,η,σ(y,H)am,m′,m′′

×
(
Zν0 (y,H)δ0,m′′ − Y0Zν0 (y,H) fνm′′(y,H)

)
× Y0 Z

ν′

0 (y, H̄σ(H))fν
′

m′(y, H̄σ(H)),
(4)

and projection of the out-scattering yields:

Ŝν,outm (y,H) =
∑
ν′,η,σ

∞∑
m′,m′′=−∞

cν
′,ν
m′′,η,σ(y, H̄−σ(H))am,m′,m′′

×
(
Zν

′
0 (y, H̄−σ(H))δ

0,m
′′ − Y0 Z

ν′
0 (y, H̄−σ(H))fν

′

m′′ (y, H̄−σ(H))
)

× Y0 Z
ν
0 (y,H)fνm′ (H)), (5)

where H̄σ = H + σ. We approximate the band structure
for GaAs to be isotropic, therefore the density of states is
independent of the angle and all expansion coefficients vanish
except for the zeroth order, Zν0 (y,H). The integral of products
of Fourier harmonics am,m′,m′′ is:

am,m′,m′′ =

∫ 2π

0

Ym(φ)Ym′(φ)Ym′′(φ) dφ.

When the transition rate depends on the angle between the
initial and final wave vectors, like polar optical phonon scat-
tering, higher order expansions of the transition rate must be
considered. The non-polar phonon scatterings, like acoustic
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Fig. 1. Double-gate nMOSFET with a GaAs channel.

and inter-valley phonon scattering [7], can be treated as
velocity randomizing hence only the zeroth harmonic, c0 in
Eqs. (4) and (5) contributes.

The scattering coefficient of the polar optical phonon
scattering can be expressed as cm = γ0(c̄m + c̄−m− δ0,mc̄m).
The constant part of this coefficient is given by [7]

γ0 =
π ωphe

2

2
(

1

ε∞
− 1

εs
)(nph +

1

2
± 1

2
),

where ωph is the angular frequency of the polar optical
phonon, the phonon number nph is given by the Bose-Einstein
distribution, and ε∞ and εs are the high frequency and static
dielectric constant, respectively. The second part of the scat-
tering coefficient cm depends on the harmonics and energies.

c̄m(k, k′) =

∫ 2π

0

Fν,ν′(q)

q
Ym(φk,k′) d(φk,k′), (6)

where

q2 = k2 + k′2 − 2kk′ cos(φk,k′),

Fν,ν′(q) =

∫
x

∫
x′
ξ†ν(x)ξν′(x)ξ†ν(x′)ξν′(x′)e−q|x−x

′|dx′dx,

(7)

with the normalized wave function ξ(x). Thus, the polar optical
phonon interaction is an intra-valley, inelastic and anisotropic
interaction.

The boundary condition for source and drain contacts in the
BE is of the Neumann-type together with a surface generation
rate. After an expansion onto Fourier harmonics it reads [8]:

Γνm(y, H) = Zν0 f
eq
0 (y,H)

∫ 2π

0

Θ(v · n)v · nY0(φ)Ym(φ)dφ

+Zν0

∞∑
m′=−∞

fνm′(y,H)

∫ 2π

0

Θ(−v · n)v · nYm′(φ) Ym(φ)dφ,

(8)

where n is a surface vector pointing into the device, v the
group velocity and Θ(x) the Heaviside function.

III. RESULTS

Results are presented for a 2D double-gate nMOSFET
with a GaAs channel, as shown in Fig. 1. The device is
homogeneous in z-direction. The grid is equidistant with a grid
spacing of 0.2nm in x-direction, and 0.6nm in y-direction.
The nonparabolic conduction band of GaAs comprises the Γ-
valley in the center of the first Brillouin zone, four equivalent
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Fig. 2. Stationary drain current IDS vs. drain bias VDS at VGS =
0.7V, 0.6V, 0.5V .
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Fig. 3. Stationary drain current IDS vs. gate bias VGS, at VDS = 0.7V and
VDS = 0.01V

L-valleys, and three equivalent X-valleys. The doping profile
of the device including a gate underlap of 1nm, a slope of
1nmdec , and a maximum value of 5 · 1019cm−3 is shown in Fig.
4. We use the material parameters reported in [9] for GaAs.

The SE is solved in the GaAs channel in x-direction
(confinement direction), while the BE is set up in y-direction
(transport direction) in the real space and 2D k-space, with an
energy grid spacing of 6meV and the five lowest subbands are
included. The scattering term consists of intra-valley elastic
acoustic phonon and inter-valley phonon scattering, both of
which are approximated as velocity randomizing, and intra-
valley polar optical phonon scattering.

To compute the potential, subband energies, and wave
functions, the PE and SE are solved until self-consistency
is reached. Thereafter the PE, SE, and BE are solved self-
consistently by the Gummel iteration method [10].

The drain current versus drain bias at a gate bias of
VGS = 0.5V , 0.6V , and 0.7V is plotted in Fig. 2 while
the resulting drain current versus gate bias at a drain bias of
VDS = 0.01V and 0.7V is depicted in Fig. 3. The electron
density integrated in the confinement direction is plotted in
Fig. 4 at a drain bias of VDS = 0.7V for various gate biases.
The fraction of electrons in the lowest subband of the Γ-, L-,
and X-valleys is shown in Fig. 5. These three subbands contain
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Fig. 4. Electron densities integrated in the confinement direction (solid lines;
left axis) for VDS = 0.7V and VGS = 0V, 0.2V, 0.5V, 0.7V together with
the doping density ND (dashed line; right axis).
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Fig. 5. Fraction of electrons in the minimum subband of the Γ-, L-, and X-
valleys for VDS = 0.7V and VGS = 0.5V .

more than 99% of all electrons. In the source and drain most
electrons are in the four L-valleys because the Pauli principle
pushes the particles to higher energies and the four L-valleys
have a higher mass than the single Γ-valley and therefore a
much higher density of states. Under the gate the electron
density is much smaller and due to the lower energy of the
lowest subband in the Γ-valley almost all electrons reside in
the Γ-valley. Only at the end of the channel some electrons
are scattered into the L-valleys leading to a small dip in the
electron density in the Γ-valley at about y = 10nm. Thus,
the electron transport happens mostly in the lowest subband
of the Γ-valley, because this subband has the lowest barrier
with respect to total energy in the channel. The band edge of
the lowest subband of the Γ-, L-, and X-valleys is depicted in
Fig. 6

In Fig. 7 the drift velocity and its relative error are de-
picted for different maximum expansion orders of the Fourier
harmonics relative to a eleventh order expansion. The lowest
expansion order overestimates the velocity very much and a
rather high order is required to capture all aspects of the quasi-
ballistic transport. In Fig. 8 the drift velocity in the channel
region in transport direction is plotted for different gate biases.
In such a small device the length of the gate is comparable
to or smaller than the mean free path. For this reason carriers
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Fig. 6. Minimum subband energy of the Γ-, L-, and X- valleys vs position
for VDS = 0.7V and VGS = 0.5V .
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Fig. 7. Drift velocity and its relative error at VDS = 0.7V and VGS = 0.5V
for different maximum expansion orders.

move quasi-ballistically and a velocity overshoot occurs under
the gate [11]. This velocity overshoot is related to the quasi-
ballistic transport and not to the transfer of electrons from the
Γ-valley to the L-valleys (cf. Fig. 5).

Fig. 9 shows the electron energy distribution function for
different positions in the transport direction which are marked
in Fig. 6. The distribution function for position y1 is close to
the Fermi-Dirac distribution function because of the inclusion
of the Pauli principle. In Fig. 9 the zigzag behavior in the
distribution function is due to scattering by optical phonons
and the energy difference between adjacent maxima is equal
to the energy of the optical phonons. This is known as the
phonon cascade [12].

IV. CONCLUSION

We have developed the first deterministic Boltzmann-
Schrödinger-Poisson solver for III-V materials which includes
the Pauli principle and polar optical phonon scattering. The re-
sults show a velocity overshoot in the device and the transport
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in this small device is predominantly quasi-ballistic.
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