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mode of operation of sub-10nm double-ga
investigated. For that purpose, device para
symmetric/asymmetric gate-to-source/drain un
thickness are optimized to improve the ON-sta
OFF-state current ratio. The optimized devices
circuit simulation to analyze the dependence
leakage source (direct source-to-drain tunneling
gate oxide leakage currents) on the device g
symmetry in LUN) and input vectors for two- a
transistors. The analysis shows that supply-gat
reducing direct source-to-drain current as w
leakage in the stand-by mode of operatio
technology. 
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I. INTRODUCTION 
Multi-gate transistor such as a double

(DGFET) is inevitable for sub-10nm technolo
its high immunity to the short channel 
However, there is a need for the modification 
at this deeply-scaled regime since device ch
also affected by other leakage mechanism
source-to-drain tunneling (DSDT) [1-3]. N
potential barrier of a sub-10nm gate length tra
to quantum mechanical tunneling of electron
drain (IDSDT). The total OFF-state leakag
becomes the sum of IDSDT, gate oxide leakage 
thermionic current (ITHERM) over the channel 
as shown in Fig. 1 (a). One of the effective
DSDT is to increase the effective chan
introducing gate/source or gate/drain un
increasing gate length (LG) [4]. Larger cha
mitigates SCE, and leads to the increase in 
(ION) to the OFF-state current (IOFF) ratio 
corresponding non-underlapped sub-10nm dev
of gate-to-source/drain underlap also reduce
direct tunneling (EDT) current between gate 
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Fig. 2.  The baseline device structure with its parameter
framework. 

supply-gating, in leakage reduction. Finally, S
conclusions from the results of our analysis.   

II. DEVICE STRUCTURE AND SIMULATION F
The Si DGFET structure and the modeling

for the simulations and analysis in this work is
The baseline device is designed followi
Technology Roadmap for Semiconductor (
LG=7.5nm and tsi=4.5nm. It also has the 
thickness (tox) of 0.5nm (HfO2+SiO2 layers), 
for spacers. [9]. The channel and sour
concentrations are 1017/cm3 and 1020/cm3, resp
source/drain dopant concentration is assum
decade/nm toward the channel region with a 
The devices are then optimized with symm
gate-to-source/drain underlaps, and body thic
in section III). Note, all the devices are design
of 100nA/um at supply voltage (VDD) of 0.6
their gate work-function. 
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[2], [10]. To capture the quantum mechanica
quantum confinement and DSDT, which are 
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sp3d5s*tight-binding (TB) band-structure [11]
film for different body thickness. Poisson 
solved self-consistently with the ballistic 
Greens function (NEGF) [12] using the ex
masses and following the mode space app
resulting characteristics – ITHERM, IDSDT, IG, an
are used in look-up table based Verilog-A m
circuit simulations in HSPICE. Equipartition
source and drain [14] is assumed.  
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Therefore, in this work, for possible 
application, we optimize the device us
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is used on the source side compared to the dra
higher ION/IOFF [16]. The circuit behavior
devices are compared to the corresponding sy
in the next section. 

Fig. 5 shows ION under iso-IOFF of th
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are obtained for devices with larger effective c
discussed in the last section. Therefore, asy
with the same footprint as the optimized sy
(with LUN=2nm) have similar level of ION. Sinc
in ION/IOFF also comes at a cost of larger foo
these iso-footprint asymmetric devices as the 
Table 1 shows our four selected devices use
simulation in the next section. 

IV. IMPACT OF SUPPLY-GATING IN SUB-10NM

In this section, we analyze the effective
gating to improve leakage in the standby-mo
for our optimized devices. We also compare
of each leakage source on device geometry (
in LUN) and input vectors in stacked transistors

A. Leakage Reduction in Stacked Transistors
 In order to analyze the impact of su

consider the “stacking effect” in two-sta
connected) NMOS transistors. Fig. 6 compar
sources of a single NMOS transistor in O

Fig. 5.  ION under iso-IOFF of the devices with dif
underlaps and tsi=3.5nm.   
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TABLE II 
THE IMPACT OF STACKING ON SHO

Device DIBL 

Sym1 98 [mV/V] 
Sym2 136 [mV/V]

Asym1 108 [mV/V[
Asym2 149 [mV/V]
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ΔVTH 

2.3 [mV] 
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for the input vector ‘00’, ITHERM and IDSDT are much lower 
compared to other input vectors due to the negative VGS 
(VM>0) operation of the top transistor. It also leads to the 
reduction in the total leakage current, which is the sum of all 
the currents going to the ground (or, all the current coming out 
of the supply), as shown in Fig. 7 (b). However, IG shows 
different dependence on input vectors compared to other 
leakage components. In our optimized devices with 
underlapping, EDT current is negligible and only tunneling 
current between gate and the inverted channel dominates the 
gate current of ON transistor. Therefore, input state ‘01’ has 
the highest IG since the bottom transistor operates in strong 
inversion (VGS=VDD). On the other hand, with ‘10’ as an input 
vector, very small gate-to-channel tunneling current flows as 
in ‘00’. This is because the top transistor in the stack operates 
at weak inversion (VGS=VTH) since VM rises to VDD-VTH, where 
VTH is the transistor threshold voltage.  

V. CONCLUSION 
In this paper, we investigated the effectiveness of supply-

gating to improve leakage in the standby-mode of operation for 
sub-10nm technology where severe SCE along with new 
leakage mechanisms such as DSDT exists. For that purpose, 
first, we optimized sub-10nm DGFETs using 
symmetric/asymmetric underlap and considering the sensitivity 

of ION and IOFF to the variation in the body thickness. Major 
leakage current sources of the optimized devices are estimated 
using quantum device simulation. The resulting device 
characteristics are then used in circuit simulation to analyze the 
dependence of each leakage source on the device geometry (tsi 
and symmetry in LUN) and the applied input vectors for two-
(and three)-stacked transistors. The analysis shows that supply-
gating is effective to reduce ITHERM as well as IDSDT in sub-10nm 
devices.  
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