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Abstract— Germanium is a group IV semiconductor 

commonly used in Short Wave Infrared (SWIR) optical devices 
due to its relatively small band gap of 0.66eV. Like silicon in the 
period above it, the conduction band minimum of germanium does 
not lie at the same point in k space as the valence band maximum, 
making it an indirect-gap material and thus reducing its 
absorption efficiency. Unlike silicon however, the direct-gap of 
germanium is only slightly larger than its indirect-gap energy, 
giving it the possibility of possibly transitioning to a direct-gap 
material with clever band structure engineering. One such method 
showing promise involves alloying germanium with tin in various 
ratios. Using density functional theory (DFT), we can calculate the 
effects the alloy has on the band structure for different percentages 
of tin and thus predict the percentage needed to transition 
germanium into a direct-gap material. 
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I.  INTRODUCTION 
As with most semiconductors and their alloys, the valence 

band maximum of germanium is located at the gamma point in 
k space. The conduction band minimum for germanium is 
located at the L point for the conventional fcc lattice structure 
making its gap nature indirect. Fortunately, the indirect-gap 
energy is only 140meV less than the direct-gap energy [1]. This 
relatively small difference has been the motivation for band 
structure research and engineering to achieve a direct-gap form 
of the material for use in optical devices. The most promising 
techniques applied to achieve such a structure include applying 
strain and alloying with various other elements [2]. The obvious 
choice of alloy material has been tin due to its location in the 
period immediately below germanium. The alpha allotrope 
variant of tin has the same diamond crystal structure as 
germanium but acts like a semimetal with a negative band gap 
at the gamma point [2]. An elementary application of the simple 
linear form of Vegard’s law gives the indication that the 
transition from direct to indirect-gap should occur at 
approximately a 21% uniform tin concentration [3]. 
Experimental and calculated results both show the presence of 
a bowing parameter which is needed to fit the non-linear 
experimental data for how the band gaps change with varying 
tin concentration [4]. In general, it is known that with increasing 
tin concentration, both the direct and indirect-gaps of Ge1-xSnx 
shrink but the direct-gap does so at a faster rate. If the exact 
concentration of tin needed to cause this transition can be 
determined, direct-gap devices can be fabricated while still 
maintaining as much of the gap as possible. 

Band structure calculations have predominately been 
performed using single electron empirical pseudopotential 
methods with extrapolation to fit data to GeSn alloys [5]. Some 
calculations have also been applied to specific compositional 
percentages of GeSn using Density-Functional Theory (DFT). 
The theory of DFT is used to solve the many body Schrodinger 
equation for a desired atomic system, while accounting for 
electron-electron interactions and the exclusion principle [2]. 
Figure 1 shows the cells on which we have used to perform 
calculations, containing 12.5, 6.26, and 3.125% tin 
respectively.  

Fig. 1. Atomic supercells of Ge1-xSnx (12.5%, 6.25%, 3.125%) constructed 
using repeated 8 atom cubic unit cells. 

II. DENSITY FUNCTIONAL THEORY 
To obtain the band structure information for the system we 

would ideally need to solve the multi-body Schrodinger wave 
equation, with the many-body wave function ψ. 
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This equation can be replaced by solving the self-consistent 

Kohn-Sham equation for a periodic solid, decreasing the 
difficulty of the problem from an N-body problem to N, single 
body problems coupled by an effective potential.  
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This equation represents an effective system of non-

interacting particles each with Kohn-Sham orbital ϕi and energy 
εi, moving in an effective potential (veff), which generate the 
same density ρ(r) as the actual system of interacting particles. 
In the DFT framework, the total energy of the system is written 
as a functional of the charge density. 
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 𝐸[𝜌] = 𝑇[𝜌] + ∫ 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)𝑑𝑟 + 𝐸𝐻[𝜌] + 𝐸𝑋𝐶[𝜌] (4) 
 
Here, T[𝜌] is the kinetic energy, Vext is the external potential 

(electron-nuclei interaction), EH is the Hartree energy due to 
Coulombic interaction , and EXC is the exchange-correlation 
energy which accounts for electron-electron correlated motion 
and the exclusion principle. To solve the system in a self-
consistent manner, orbitals are expanded with a finite plane 
wave basis set and the nuclear core potentials are replaced by 
slowly varying pseudopotentials which reduce the number of 
plane waves needed to reconstruct them. The expansion into 
plane waves allows the equation to be changed from a set of 
partial differential equations to an algebraic eigenvalue problem 
that can be solved iteratively [6].  

The accuracy of DFT results are highly dependent on the 
combination of the system being studied, the pseudopotential 
used, and the functional applied to the calculation [7]. 
Pseudopotentials act as an effective potential that each valence 
electron interacts with, and acts to stabilize calculations by 
treating the high frequency components of the core electron 
potentials as a smoother approximation within some defined 
radius. By making this approximation, larger systems of atoms 
become solvable by reducing the number of plane waves 
needed in the calculation. Different methods exist for 
generating pseudopotentials and accuracy is generally 
dependent on the configuration of the system being studied. 
After testing numerous pseudopotentials generated using 
different functionals and valence occupancies, we were able to 
use a pseudopotential generated using Perdew-Burke-
Ernzerhof (PBE) [8] exchange-correlation to obtain an accurate 
band structure of pure germanium crystal. The calculation was 
performed using the hybrid PBE0 functional [9] which allowed 
us to tune the indirect and direct bandgap energies to their 
experimental values by applying the appropriate mixing 
fraction of Hartree-Fock exchange energy. Calculations in DFT 
transform the set of Kohn-Sham equations for non-interacting 
particles by expanding the potentials and wave functions onto a 
finite set of Npw plane waves thus turning the set of differential 
equations into an equivalent Npw-dimensional eigenvalue 
equation which can be solved iteratively and self-consistently. 
A kinetic energy cutoff is established to provide an upper limit 
for the number of plane waves used in the expansion. By 
adjusting this cutoff energy the number of plane waves in the 
expansion can be adjusted. The cutoff should be set sufficiently 
large to ensure good representation of the wave functions but 
this increase comes at the cost of increased computation time 
and memory usage. In addition to requiring a sufficient cutoff 
energy, calculations also should be performed on enough k 
points to adequately sample the Brillouin zone (BZ). During the 
calculation, integrals over the entire BZ are needed to calculate 
the charge density at each iteration. This integration is 
approximated by taking a weighted sum over a finite set of 
special points in the irreducible wedge of the BZ with weights 
corresponding to the number of equivalent points in the entire 
BZ [6]. As with increasing the cutoff energy, increasing the 
number of k points increases the computation time. Ideally, we 
would use the Monkhorst-Pack k point grid as a way to select 
points in an unbiased manner and perform a relatively 
computation-heavy self-consistent field (SCF) calculation to 

obtain an accurate representation of the system potential [10] 
[11]. This potential can then be used as an input to an 
inexpensive non-self-consistent field (NSCF) calculation with 
k points selected along the path of the high symmetry points of 
the desired band structure plot. However, Quantum Espresso 
does not allow NSCF calculations using hybrid functional 
exchange-correlations, so our calculations had to be performed 
with the desired k point path directly in the SCF calculations. 
To minimize integration errors, we used a long path length as 
well as a high k point density to attempt to cover the majority 
of the irreducible wedge. 

 While trying to tune the parameters used to obtain the 
experimental band gaps for the pure germanium crystal cell, we 
noticed that the indirect-gap energy varied linearly with the 
mixing fraction as shown in Figure 2. By simply adjusting the 
mixing fraction linearly, the direct-gap linearly varied as well 
but at a different rate to the indirect-gap. By adjusting the lattice 
constant of the cell to values slightly deviated from 
experimental values, we found that it linearly changed the 
energy difference between the direct and indirect-gap values as 
shown in Figure 3. In addition, this change was almost entirely 
independent from the absolute indirect-gap energy value which 
facilitated the adjustment of both indirect and direct-gaps. 

 
Fig. 2. Indirect-gap energy linearly tunable with hybrid functional mixing 
fraction  

 
Fig. 3. Gap energy difference tunable by adjusting lattice constant slightly  
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 The final band structure obtained of the pure germanium 
crystal is shown in Figure 4, with an indirect-gap of 0.66eV and 
a direct-gap of 0.80eV achieved using a lattice constant of   
5.573Å, only differing 1% from the quoted 5.646Å [2]. This 
calculation was performed on a simple 2 atom cell with a face-
centered cubic (FCC) Bravais lattice and the results give 
confidence in using this pseudopotential and functional for 
further, larger calculations on germanium. Similar results were 
obtained with the 8 atom cell. 

 
Fig. 4. Pure germanium band structure for 2 atom cell 

III. GERMANIUM-TIN ALLOY CALCULATIONS 

A. Supercells 
To generate supercells with variable percentage of tin, we 

change the cell from an FCC Bravais lattice with a 2 atom basis 
to a simple cubic lattice with an 8 atom basis or a tetragonal 
lattice with a 16 or 32 atom basis, each with a single tin atom. 
As with the 2 atom cell, we tune the lattice constant and mixing 
fraction of an 8 atom cell which can be repeated to generate the 
other cells. The mixing fraction used to tune the gap values of 
the pure germanium 8 atom cell is kept constant when tin is 
added and when the larger cells with tin are used. 

Performing computations using larger supercells comes 
with the cost of significantly increased computation time. The 
Virtual Crystal Approximation (VCA) is a work-around to this 
problem, wherein the characteristics from the pseudopotentials 
of both germanium and tin are merged into a hybrid 
pseudopotential representing a non-existent atom which 
approximates a percent concentration of each atom, allowing 
for small atomic cells but introducing non-physical atoms 
[3][5]. Because of the potentially limiting transferability 
inherent to certain kinds of pseudopotentials, care must be taken 
to ensure that pseudopotentials maintain accuracy. The effects 
of these approximations are evident in published results on the 
subject, where the various transition percentage predictions 
range greatly from 6-21% or more depending on the method 
used [2]. With access to the High-Performance Computing 
Cluster Deepthought2 at the University of Maryland, the 
computationally expensive, large supercell DFT calculations 
can be run massively parallelized with Quantum ESPRESSO 

[12] to obtain accurate band structures for many different cell 
sizes and fractions of tin. Instead of using the VCA approach, 
we perform ab initio calculations, where the effect of the 
potential due to tin is localized at a particular lattice site, instead 
of being averaged over the entire cell. 

B. Numerics, Parallelization and Results 
Calculation time is system dependent and increases greatly 

with an increase in the number of k points used, the number of 
bands present, and the number of plane waves employed. As an 
approximation, the time to complete a calculation in order or 
big O notation is given by [6]: 

 𝑇𝐶𝑃𝑈 ≈ 𝑁𝑖𝑡𝑒𝑟𝑁𝑘 × (O(𝑁𝑏𝑁𝑝𝑤
2 ) + O(𝑁𝑏𝑁𝑝𝑤log(𝑁𝑝𝑤)) +

            O(𝑁𝑏𝑁𝑝𝑤
2 ))  (5) 

Where Niter is the number of iterations required to achieve 
self-consistency, Nk is the number of k points specified, Nb is 
the number of bands, and Npw is the number of plane waves in 
the expansion. The number of k points required to achieve 
convergence generally decreases with an increase in the 
supercell size. In contrast, the number of bands required will 
increase with cell size. The number required is given by the 
number of atoms in the supercell multiplied by the number of 
valence electrons per atom. The number of plane waves 
required to achieve convergence will also generally increase 
with an increasing supercell size. The number of iterations to 
achieve self-consistency is more difficult to predict but can be 
assumed to fall within 5 to 20. To complete calculations in a 
reasonable amount of time due to this highly-nonlinear time 
scaling, we use the multiple parallelization levels available in 
the Quantum Espresso PWscf program. Quantum Espresso is 
set up with different levels of parallelism forming a hierarchical 
structure. The top level divides the processors into pools, each 
of which takes care of the calculation at a group of k points. The 
next level, known as plane wave parallelization, distributes the 
wave function coefficients across the processors in each pool, 
offering one of the biggest calculation speedups. Once the 
speedup for this level saturates, the final level of parallelization 
can extend the processor scaling. This level divides each group 
of plane wave processors into task groups, each of which 
perform the calculation on a group of electronic states. The 
plane wave groups can also be partitioned into linear algebra 
groups which parallelize diagonalization and matrix 
multiplication by distributing across groups of a square number 
of processors [6].  

Through various trials, we have been able to find optimal 
distributions of processors for each parallelization level and 
bring calculation times down significantly. For the two atom 
cell using hybrid functional DFT with 1500 k points and a 
cutoff energy of 100Ry, the calculation time was able to be 
reduced from multiple hours in a serial hybrid functional 
calculation to under 5 minutes in parallel using 144 processors. 

Similar to the two atom cell, the 8, 16, and 32 atom cell 
calculations were parallelized to reduce their computation time 
while maintaining accuracy with respect to cutoff energy and 
number of k points. The band structures were obtained from 
these calculations and the direct and indirect-gap energies were 
extracted for the various compositional percentages of the GeSn 
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alloy. Plotting these energies, we extract the tin percentage 
needed to transition from an indirect to a direct-gap material 
shown in Figure 5. The transition at 8.5% tin is in agreement 
within the range predicted by various other methods [2]. 

 
Fig. 5. Indirect to direct-gap transition occurs at approximately 8.5% tin 
concentration. 

IV. CONCLUSION 
 In performing these calculations, we have ensured their 
convergence by increasing the number of k points and the cutoff 
energy used until the total energy of each system studied varied 
less than 0.01 Ry. The systems studied were representative of 
uniformly distributed tin in a GeSn crystal, which we take to 
approximate a real world uniform distribution. From these 
calculations, we obtained the band structure for different 
compositional percentages of tin and have extracted their 
various direct and indirect-gap energies. By plotting these, we 
found the crossing point which indicates the transition from an 
indirect-gap to occur at 8.5% tin. At this tin concentration, and 
presumably all percentages higher than this, the material has 
undergone the transition into a direct-gap material. By 
manufacturing the alloy directly at this transition percent, the 
band structure is predicted to be direct. In addition, it will also 

have the added benefit of maintaining as much of the initial gap 
value as possible. This is due to the trend which indicates that 
adding higher and higher concentrations of tin will continue to 
shrink the value of the direct-gap. 
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