
  

 
Fig 1. Bloch’s law fails to predict the temperature dependency of ܯ௦ at 
higher temperatures 

  

Abstract— While a tremendous amount of work has been 
dedicated to the study of Langevin thermal noise field in 
spintronics magnetic tunneling junction (MTJ), a comprehensive 
model that predicts both static and dynamic responses of the 
magnetization due to temperature variations is yet to exist. In this 
work, we will first study the dependency of the saturation 
magnetization on temperature. We will then analyze the 
variations of the shape anisotropy and energy barrier of the 
straintronics MTJ on temperature. Lastly, we will incorporate 
these dependencies, along with the well-studied Langevin thermal 
field into the LLG equation to simulate the dynamic and static 
behavior of the straintronics devices. 

I. INTRODUCTION 

Aggressive scaling of CMOS technologies and the resulting 
increase in the leakage power and the energy densities have 
created a profusion of research interest in alternative 
technologies in order to find solutions that allows industry to 
keep up with the scaling pace predicted by Moore’s Law [1]. 
Among the proposed technologies, spintronics memories and 
logic that operate based on the tunnel magnetoresistance 
(TMR) effect have attracted significant attention in the past 
years. Although TMR was discovered first in 1975 by Julliere 
[2], energy efficient methods to exploit this property in the 
ubiquitous integrated circuits were not present until the 
discovery of spin transfer torque effect (STT) [3]. STT 
demonstrates non-volatility, compatibility with CMOS 
circuitry, and performance and energy efficiencies that are 
almost comparable with the most efficient CMOS memories. 
However, due to the use of static currents, the STT’s energy is 
yet far above the fundamental limits of the magnetic logic [4]. 
In order to remedy this and push the energy efficiency of the 
magnetic tunneling junction (MTJ), straintronics, as a voltage-
based switching method, has been proposed recently [4-10]. 

 Modeling of thermal noise by incorporating the Langevin 
field into the dynamic model of the spintronics devices has 
been studied comprehensively in recent years [11, 12]. It is 
demonstrated that the thermal noise has significant impacts on 
the flipping delay of the STT MTJ. Furthermore, as we will 
show in this paper, the straintronics MTJ, also has a strong 
dependency on the Langevin thermal noise field. Besides its 
direct influence on the initial angle of switching (and therefore, 
flipping delay) in MTJ, thermal noise affects the write error and 
hold error probabilities of the device. 
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While the Langevin thermal field is used to predict the 
dynamic response of the device in the presence of thermal 
noise, the static properties and the energy barrier should also be 
studies in detail. The latter has important influences on the 
critical flipping voltage, initial magnetization angle, and data 
retention time. Analysis of both static and dynamic metrics of a 
straintronics device is the main goal of this work. 

II. SATURATION MAGNETIZATION AND ENERGY BARRIER 

Although the simplified model for the temperature 
dependency of the saturation magnetization, ܯ௦, is given by the 
Bloch’s Law [13], the method fails to predict the temperature 
dependencies at higher temperatures, while most of the 
integrated circuits (ICs) operate at temperature ranges between 
200K and 400K. On the other hand, an alternative method 
based on the Brillouin function has proven to mimic the 
experimental data quite accurately [13]. The inaccuracy of the 
Bloch’s model is emphasized in Fig 1 by comparing its data 
with the Brillouin data. The dependency of ܯ௦ on temperature 
is  predicted by the Brillouin function as: ܯ௦ሺܶሻܯ௦ ൌ ܬ2  ܬ12 coth ൬2ܬ  ܬ12 ൰ݔ െ ܬ12 coth ൬ ܬ12  ൰ (1)ݔ

Where, ܬ is the total angular momentum, and ݔ, for a 
ferromagnetic material is given by: ݔ ൌ ௦ሺܶሻ൯ܰ݇ܶܯߤ௦൫ܰ௪ܯ  (2) 

Where, ߤ is the permeability of vacuum, ܯ௦is the 
saturation magnetization at absolute zero, ܰ௪ is a material 
dependent constant, ܰ is the number of atoms in the unit 
volume, and ݇ܶ is the energy unit with ݇ being the Boltzmann 
constant. By intersecting (1) and (2), the dependency of ܯ௦ on 
temperature can be obtained, which is plotted in Fig 2 for 
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Fig 3. View of the straintronics device, demonstrating t
the electrical model, and the resistance states of the MT
in antiparallel and low resistance in parallel orientations 

Fig 2. Brillouin-based temp. dependency of ܯ௦ and ܧ௦ 
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Fig 5. Temperature dependency of EB
temperature approaches Curie levels, 
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Fig 4. Temperature and stress dependency 
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III. SIMULATION 

While we used Brillouin funct
modeling the static behavior of th
thermal noise, predicted by the Lang
be included in the dynamic mode
thermal fluctuations on the beha
Conventionally, the dynamic beh
device’s magnetization vector, ܯሬሬԦ,  
known Landau-Lifshitz-Gilbert (LLG݀݀ݐܯ ൌ െ ሺ1ߛ  ଶሻߙ ൫ܯሬሬԦ

െ ௦ܯߛ ൈ ቀߙ 
Here, ߙ is the damping factor, ߛ

and ܪሬሬԦ is the net magnetic field actin
net magnetic field is mainly ori
uniaxial, and stress anisotropies. B
spherical coordinates, (ݎ, ,ߠ ߮), the i
the magnetization vector, at any time
following equations [4]: 
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G) equation [4]: ܯԦ ൈ  ሬሬԦ൯ܪ
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(3) 
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Fig 6. The relative strength of the thermal noise for different materials as a 
function of temperature; Cobalt’s low damping factor contributes to its higher 
immunity against thermal noise 

 
Fig 8. (a) Critical voltage of different materials; it is observed that as the ramp voltage approaches the critical stress, higher noise is observed, and (b) the 
dependency of the initial magnetization angle and flipping delay on temperature 
 

 
Fig 7. Initial magnetization angle as a function of temperature for different 
materials. 

ݐߠ݀݀ ൌ 1ߛ  ଶߙ ሺܪఝ  ݐ݀߮݀ ఏሻ (4)ܪߙ ൌ 1ߛ  ଶߙ ߠ݊݅ݏ1 ሺܪߙఝ െ  ఏሻ (5)ܪ

where, ܪఏ  and ܪఝ  are the spherical components of the net 
magnetic field in ߠ and ߮ directions, respectively. 

The thermal noise can be modeled by incorporating the 
Langevin thermal field, ܪே, into the LLG equation [11] and 
replacing the term ܪ with ܪ௧௧ ൌ ܪ   :ே, whereܪ

ே,ܪ ൌ ඨ ௦ܸܯߛߤܶ݇ߙ2 ܺሺݐሻ         ݅ ൌ ሺݔ, ,ݕ  ሻ (6)ݖ

Here, ܸ is the free layer’s volume, and ܺሺݐሻ’s are 
uncorrelated zero-mean unit-variance Gaussian random 
variables in the direction of the Cartesian coordinates. 

It would be worthwhile to investigate the effect of 
temperature and the choice of material on the relative strength 

of the thermal noise, defined as ܪே/ܪ. The latter expresses the 
tendency of the magnetization vector to fluctuate around the 
major axis. The lower the relative strength is, the higher the 
fluctuations around the major axis will be. Fig 6 demonstrates 
the effect of temperature and choice of material on the relative 
strength of the thermal noise. At near-zero temperatures, (6) is 
very small, making the ratio negligible. As temperature rises, 
the thermal noise increases, while the net magnetic field due to 
magnetic energies becomes weaker mainly due to the reduction 
in the saturation magnetization. As temperatures get closer to 
the Curie level, the net magnetic field approaches zero, 
drastically increasing the relative strength of the thermal noise, 
as observed in the figure. 

Incorporating the Langevin thermal noise field in the LLG 
equation leads to the fluctuations of the magnetization vector 
along the major axis in the absence of stress. The initial 
magnetization angle, ߠ, due to the thermal noise has a 
Gaussian variation with a root mean square (RMS) value of 
[14]: 
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ି௦ߠ ൌ ඨ  (7) ܪ௦ܯܸߤܶ݇

The variations of ߠ as a function of temperature is 
simulated and plotted in Fig 7. Nickel demonstrates higher 
fluctuations due to its lower ܯ௦ value, while Galfenol has the 
least fluctuation owing to its higher saturation magnetization. 
While a higher ߠ can essentially lead to a faster flipping, other 
material-dependent factors are also of crucial importance. For 
example, Galfenol, although demonstrating a lower 
magnetization fluctuation in (7), is considered a fast material 
for straintronics applications, mainly due to its high 
magnetostriction coefficient [4]. 

The simulation results on our model are demonstrated in Fig 
8a for four different materials, where we applied a slow ramp 
across the straintronics device. As predicted by [4], Cobalt has 
the highest flipping delay due to its high ܯ௦ and low 
magnetostriction coefficient. It can be seen that as ߪ ՜  , theߪ
thermal noise becomes larger, which is due to the reduced 
energy barrier predicted in Fig 4. 

Lastly, we simulated the effect of the temperature on the 
initial angle of the magnetization and its resulting impact on the 
flipping delay of the straintronics device in Fig 8b. As the 
temperature increases, the values of ܪே,  in (6) keep 
increasing. This leads to an increase in the initial magnetization 
angle as demonstrated in Fig 8b, and therefore, the critical 
flipping delay reduces, leading to a faster flipping of the 
magnetization vector.  

IV. CONCLUSION 

A comprehensive model for the straintronics MTJ was 
developed by incorporating both the Brillouin saturation 
magnetization and the Langevin thermal fields into the LLG 
equation. The analysis and methodology proposed in this work 
can be used for both straintronics and spintronics thermal 
modeling. 
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