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Abstract—We have theoretically investigated the specific con-
tact resistivity of n-type Si and Ge metal-insulator-semiconductor
contacts with various insulating oxides. We have found a signifi-
cant reduction of the contact resistivity for both Si and Ge with an
insertion of insulators at low and moderate donor doping levels.
However, at the higher doping levels (>1020 cm−3), the reduction
of the contact resistivity is negligible and the contact resistivity
increases as the insulator thickness increaes. Thus, we have shown
that the lowest possible contact resistivity can be achieved with
the metal-semiconductor contact with highest possible activated
doping density.

I. INTRODUCTION

As the semiconductor devices scale down to nanometer
regime, the contact resistance becomes dominant component of
parasitic resistance of the devices. Thus, it is urgently required
to reduce the contact resistance to meet the performace target
of the future 7nm and beyond technology nodes. According to
the ITRS roadmap [1], the maximum specific contact resistivity
ρc is required to be 1.5 × 10−9 Ω.cm2 by 2028 to meet
the overall parasitic resistance requirement in the silicon (Si)
MOSFET devices. In a theoretical study on the intrinsic limit
of the contact resistivity within the ballistic trasport limit, it
has been shown that the ITRS target is indeed possible from a
theoretical perspective in a moderate doping density range for
Si [2]. Yet, the lowest specific contact resistivity reported in
an experiment so far for the p-type metal-semiconductor (M-S)
contact (Pt-Si) is ρc = 1.9×10−9 Ω.cm2 [3]. In order to further
reduce the contact resistivity, metal-insulator-semiconductor
(M-I-S) contacts have been proposed and demonstrated to
depin the metal Fermi-level by inserting an ultrathin insulating
layer in between metal and semiconductor leading to a reduced
Schottky barrier height so the lower the contact resistivity [4]–
[7]. The Schottky barrier height reduction by the Fermi level
depinning effect has been theoretically investigated within
the metal induced gap states (MIGS) theory [8]–[10] which
has been extensively adopted in the M-I-S contact resistivity
modeling to seek an optimized insulator thickness for the
lowest possible contact resistivity [11], [12].
In this study, we have employed MIGS modeling [13] to
describe the Fermi-level depinning due to an ultrathin insulator
in between the metal and semiconductor layers. We also have
employed a tunnleling model based on the transfer matrix
method (TMM) to calculate the tunneling current across the
given potential barrier profile. Then we have evaluated the

Fig. 1. Band diagram of (a) M-S and (b) M-I-S contact where the
metal workfunction, electron affinity, charge neutrality level, Schottky barrier
height, Fermi level, vacuum level, conduction and valence band edge of the
semiconductor are denoted as Φm, χs, φCNL, φn, EFM (EFS ), Evac, Ec

and Ev , respectively.

contact resistivity as a function of doping density and insulator
layer thickness for a given M-I-S contact.

II. METHODOLOGY

Figure 1 (a) shows the schematic band diagram of
the Schottky barrier for the M-S contact where the one-
dimensional (1D) non-selfconsistent potential barrier profile
can be written as [14],

V (z) =
q2ND

2εs
(WD − z)2 − q2

16πεsz
, (1)

where the ND is the doping density in the semiconductor,
permittivity of the semiconductor εs=11.7ε0, and the depletion
width WD =

√
2εs(Vbi − V )/qND). V is the applided bias

volage to the contact and the surface potential is qVbi = φn−
(Ec−EFS) where the position of the conduction band relative
to the Fermi-level is approximated as [15],
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where kBT=0.0258 eV at T=300 K and the γ = ND/Nc.
The effective density of states for electrons is Nc =
2(2πm∗dckBT/h

2)3/2 where the density of states effective
mass m∗dc for electrons is 1.09 me and 0.56 me for Si and Ge,
respectively. Note that the metal Fermi-level EFM is aligned to
the charge neutrality level (φCNL) (measured from the valence

SISPAD 2015, September 9-11, 2015, Washington, DC, USA

SISPAD 2015 - http://www.sispad.org

234978-1-4673-7860-4/15/$31.00 ©2015 IEEE                  



TABLE I. MATERIAL PARAMETERS FOR SEMICONDUCTORS

Eg(eV) ε(ε0) S χ(eV) φCNL(eV) α(Å) δs(Å)
Si 1.12 11.7 0.296 4.05 0.35 2.35 3.0
Ge 0.66 16 0.217 4.13 0.11 2.45 4.0

TABLE II. METAL WORKFUNTIONS

Pt Ti Cu Al Ag Au Ni
Φm(eV) 5.12 4.33 4.53 4.1 4.26 5.1 5.04

band maximum) of the Si due to the MIGS density near the
interface leading to the Fermi-level pinning. Thus the Schottky
barrier height is determined by the Fermi-level pinning factor
S [10], [16] and the ΦS which is measured from the vacuum
to the φCNL,

φn = S(Φm − ΦS) + (ΦS − χs) . (3)

The pinning factor S is related to the MIGS density as
following [17],

S =
1

1 + (q2DMIGS,0δs)/(εs)
, (4)

where the DMIGS,0 = 1/(πα2Eg) is the MIGS density at zero
insulator thickness in between the metal and semiconductor
contact. α is the atomic bonding length, δs is the MIGS decay
length [9] and the Eg is the band gap of the semicoductor. We
have used material paramesters for semiconductors and metal
workfunctions as shown in Table I and II and the calculated
pinning factor S is shown in Table I.
With an insertion of an insulator layer in between the metal
and semiconductor contact as shown in Fig. 1 (b), we can
re-write the Eq. 3 as,

φn = ΦS − χs − ψs , (5)

where the equilibrium surface potential corresponding to the
total band bending within the semiconductor [13],

ψs(Cs) = − CI
CI + CS

ΦMS −
CiI

CiI + CiS
∆IS , (6)

where the CI and CS are the surface capacitance densities for
the insulator and semiconductor, respectively, while CiI and
CiS are insulator-semiconductor dipole capacitance densities
for the insulator and semiconductor, respectively. ∆IS is the
insulator-semiconductor dipole voltage,

∆IS = (1− SIS)[φCNL,s − φCNL,I ] , (7)

where the SIS is the pinning factor for the insulator-
semiconductor interface and the φCNL,I is the charge neu-
trality level of the insulator as listed in Table. III for various
insulators. In order to evaluate the n-type SBH in Eq. 5, the
surface potential ψs should be assessed simultaneously which
is described in more detail in Refs. [12], [13], [18]. Note the
ΦMS in Eq. 6 is,

ΦMS = ΦM,eff − ΦS , (8)

where the effective metal workfuction ΦM,eff is given as,

ΦM,eff = S(tox)ΦM + [1− S(tox)]S(tox)ΦS , (9)

in terms of the insulator thickness dependent pinning factor,

S(tox) =

(
1 + q2DMIGS(tox)(δsεox + toxεs)

εoxεs

)−1

, (10)

TABLE III. MATERIAL PARAMETERS FOR INSULATORS

ε(ε0) ε∞(ε0) Eg(eV) χ(eV) φCNL(eV) a0(Å) m∗ (m0)
HfO2 25.0 4.0 6.0 2.4 3.7 5.08 0.17

La2O3 30.0 4.0 6.0 2.0 2.4 3.94 0.26
Al2O3 9.0 3.4 8.8 1.0 5.5 4.79 0.2
TiO2 80.0 7.8 3.05 3.9 2.2 4.59 0.3

Si3Ni4 7.5 3.8 5.3 2.1 2.6 7.61 0.2
GeO2 5.9 1.8 4.3 2.24 3.34 4.4 0.7
ZnO 9.0 3.7 3.4 4.6 3.1 3.25 0.3

where the tox is the insulator thickness and εox is the dielectric
constant of the insulator. Also,the insulator thickness depen-
dent MIGS density can be written as,

DMIGS(tox) = DMIGS,0 exp[−tox/δox] , (11)

where δox = 2h̄2π/(mea0,oxEg,ox) where the a0,ox and
Eg,ox are the lattice constant and band gap of the insulator,
respectively [17]. Note the Eqs. 5, 10 and 11 consistently
converge to the Eqs. 3 and 4 without the insulator layer (i.e.
tox → 0).
Once we have established 1D homogeneous Schottky barrier
profile with and without an insulator layer using the MIGS
theory, we then have calculated the net current density using
the Tsu-Esaki formula within parabolic band and effective
mass approximation [19],

J =

nvalley∑
i=1

qm∗c,ikBT

2π2h̄3

∫ ∞
Emin

dEzTi(Ez) ln

{
1 + e(EFM−Ez)/kBT

1 + e(EFS−Ez)/kBT

}
,

(12)
where m∗c,i is the orientation dependent conductivity effective
mass at each equi-energy surface (represented by index i and
the number of equi-energy surface ‘nvalley′ is six and four
at the conduction band minimum of Si and Ge, respectively
) [20]. We have taken into account the multi-valley tunneling
by summing up the current density at all conduction band
valleys. The tunneling probability Ti(Ez) at a given inci-
dent electron energy Ez at each conduction band valley i
is evaluated using the conventional transfer matrix method
(TMM) [21] with a boundary condition used in Ref. [22],

Ti(Ez) =
mi∗
tun,N+1

mi∗
tun,0

kN+1

k0

∣∣∣∣ k0

kN+1

∣∣∣∣2 ∣∣∣∣ 1

M22

∣∣∣∣2 (13)

where the indices 0 and N + 1 represent the first (in the
metal) and last (in the semiconductor) discretized grid points
across the potential barrier profile, M22 is the matrix el-
ement of the transfer matrix and the wavevector kN+1 =√

2mi∗
tun,N+1(Ez − VN+1)/h̄. Note that we have used the

orientation depedent tunneling effective mass mi∗
tun at each

conduction band valley i [23] when evaluating the tunneling
probability. Finally, the specific contact resistivity ρc = dV/dJ
is then numerically evaluated at a very small applied voltage
V = 10−5 V at which the ρc converges by varying V .

III. RESULTS AND DISCUSSIONS

Figure 2 (a) shows the ρc for the n-type M-S contact
for (001) Si at a given Schottky barrier height varying from
0.2 eV to 0.8 eV as a function of donor doping density at
T=300 K. As expected the ρc is smaller at lower barrier height
and continuously decreases as the doping density increases.
In addition, the barrier height dependence on the ρc becomes
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Fig. 2. Contact resistivity of M-S contact as a function of doping density
for (a) (001) Si at a given Schottky barrier height, (b) (001) Si and Ge at the
barrier height 0.2, 0.4 and 0.6 eV, (c) (001), (110) and (111) Si and Ge with
Al metal contact, and (d) (001) Si and Ge with Ti, Al, and Ag metal contacts.

Fig. 3. Contact resistivity of M-I-S contact as a function of insulator thickness
for Ti/ox/n-Si at (a) Nd=1019 cm−3 and (b) Nd=1020 cm−3, and Ti/ox/n-Ge
at (c) Nd=1019 cm−3 and (d) Nd=1020 cm−3.

negligible at ultra high doping region (Nd > 1021 cm−3) and
the ρc converges to ∼2.1×10−9 and begins to increase with
even higher doping which is due to the interplay between
the matrix element M22 and the wavevector kN+1. Because
the wavevector kN+1 in Eq. 13 becomes dominant at very
high dopings as the Fermi-level deeply penetrates into the
conduction bands while the matrix element M22 converges to
unity. Thus the tunneling probability is reduced which leads
to the decreased tunneling current.
Figure 2 (b) shows that there is only slight differences in ρc be-
tween Si and Ge at a given barrier height and at a given crystal
orientation. Also, a slight orientation dependence can be seen
in Fig. 2 (c) (lower ρc with (001) orentation for Si while lower

Fig. 4. Contact resistivity of M-I-S contact as a function of doping density
for (a) Ti/TiO2/n-Si and for (b) Ti/TiO2/n-Ge at a given TiO2 thickness

Fig. 5. Contact resistivity from the calculation for (a) and normalized contact
resistance from the measurement for (b) of Ti/n-Si and Ti/TiO2 (1nm)/n-Si
contact as a function of doping density

ρc with (111) orientation for Ge than other crystal orientations
in this study) due to mainly orientation dependent coductivity
and tunneling effective masses for electrons. Figure 2 (d)
shows the metal workfunction (ΦM ) dependence on the ρc for
(001) Si and Ge and it is shown that the Al (ΦM=4.1 eV) gives
lower ρc than any other metals used in this study (Pt, Ti, Cu,
Ag, Au, and Ni) because of the lower Schottky barrier height
with Al (0.56 eV for Si and 0.427 eV for Ge) which gives
ρc=3.04×10−9 Ω.cm2 for Si and ρc=4.02×10−9 Ω.cm2 for Ge
at ND=1021 cm−3. Though we have to reiterate that the there
is no sigficant difference in ρc at ultra high activation doping
concentrations no matter what metal workfunction, crystal
orientation and even semiconductors are used. Therefore, it
is critically required to maximize the activated doping level
in the source and drain contact region for the lowest possible
contact resistivity.
Having discussed the ρc for the M-S contact, we have shown
the ρc as a function of insulator thickness (tox) for M-I-S
contact in Fig. 3 with various insulators (HfO2, La2O3, Al2O3,
TiO2, Si3N4, GeO2, ZnO) for Si and Ge with Ti as a contact
metal. As clearly seen in Fig. 3 (a) and (c), the ρc can be
significantly reduced (up to two orders of magnitude) by an
insertion of insulating layers for both Si and Ge at moderate
doping level ND=1019 cm−3 due to the Fermi-level depinning
effect leading to reduced Schottky barrier height [7], [12],
[18]. However, the ρc begins to increase when the thickness of
the insulator becomes thicker than their optimized thicknesses
as the barrier tunneling through the insulator offsets the ρc
benefit from the reduced barrier height. We have found that
the the lowest ρc can be achieved with Si3N4 for Si and
ZnO for Ge with optimized insulator thicknesses tox ∼0.5 nm
and tox∼3.0 nm, respectively, at the moderate doping density.
However, there is no (or negligible) reduction of the ρc by
the insulator at high doping density ND=1020 cm−3 as shown
in Fig. 3 (b) and (d) because the ρc benefit from the reduced
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barrier height becomes negligible at high doping density as
already shown in Fig. 2. It is worth to note that the ρc
at the high doping ND=1020 cm−3 without the insulator
(i.e. M-S contact) is still lower than the ρc at the moderate
doping ND=1019 cm−3 with optimized insulator thickness.
Therefore we can conclude that there is no benefit (or at least
questionable benefit) for the lowest possible ρc by employing
the M-I-S contact with ultra high doping density.
One can see more clearly in Fig. 4 that the lowest ρc for
both Si and Ge can be achieved at ND=1020 (or higher
doping density) with M-S contact as opposed to the previous
theoretical calculations [12], [18]. The same trend has been
also confirmed by our experiment on the contact resistance
of Ti/TiO2 (1nm)/Si contact as shown in Fig. 5 (b) in which
slightly lower contact resistance was observed from the M-S
contact at higher doping level ND=4×1020 cm−3. However,
the improvement (or degradation) of the resistance at high
(or lower) doping level is not as significant as the calculated
ρc as shown in Fig. 5 (a) in which the ρc improvement (or
degradation) is about 10 times (or 100 times) at high (or lower)
doping density from the M-S contact when compared the M-
I-S contact. We believe that the small improvement of the
resistance from the experiment at high doping is due to the
existence of the native oxides as well as the poor quality of
the interface formation.

IV. CONCLUSION

We have theoretically calculated the contact resistivity for
M-S and M-I-S contacts with various insulators. We have
employed MIGS modeling to describe the Fermi-level depin-
ning effect by an insertion of the insulator in between the
metal and semiconductor contact. Also, we have calculated
the current density across the Schottky barrier profile within
the parabolic and effective mass approximation by considering
multi-valley and orientation dependent effective masses. We
have shown that it is critically required to maximize the
activated doping density in the M-S contact to achieve the
lowest possible contact reistivity regardless of the crystal
orientation, metal and semiconductor. In addition, we have also
shown that the lowest contact resistivity can be achieved with
M-S contact with ultra high doping density rather than M-I-S
which is consistently observed from our experiment on contact
resistance in Ti/TiO2/Si contact.
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