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Abstract—A self-consistent analytical solution of the multi-
subband Boltzmann transport equation with collision term de-
scribing grain boundary and surface roughness scattering is
presented to study the resistivity scaling in metal nanowires.
The different scattering mechanisms and the influence of their
statistical parameters are analyzed. Instead of a simple power
law relating the height or width of a nanowire to its resistivity,
the picture appears to be more complicated due to quantum-
mechanical scattering and quantization effects, especially for
surface roughness scattering.

I. INTRODUCTION

An increasingly important factor for increasing the transis-
tor density is the resistivity of the interconnects wiring all of
them together. Current experimental data seems to indicate that
the resistivity in metal thin films and wires scales inversely
proportional to the width or diameter and that it is mainly
driven by increased electron scattering due to grain boundaries
(GBs) and surface roughness (SR) of the wire boundaries [1]–
[3]. The wire dimensions have to scale down together with
the transistor size, but because of the resistivity scaling there
is an increase of many detrimental effects, such as heating,
power consumption and signal delay. If the resisitivity increase
cannot be kept under control, the interconnects become a major
bottleneck hampering further downscaling.

While experimental data on the resistivity of metal wires
with nanoscaled crosssection seems to be still in agreement
with the commonly used Fuchs-Sondheimer and Mayadas-
Shatzkes (MS) models, these models make use of fitting pa-
rameters and semi-classical approximations and do not provide
further insight in the quantum-mechanical effects of scattering,
confinement and the detailed structure of the GBs and SR [4]–
[6]. In this work we present an alternative approach, based on
an analytic solution of the multi-subband Boltzmann transport
equation (BTE) within the effective mass approximation for the
conduction electrons. The relaxation times (RTs) are calculated
self-consistently and Fermi’s golden rule (FGR) is used to
obtain the scattering rates [7]. The FGR matrix elements
only rely on (statistical) physical parameters of the scattering
mechanisms, such as the shape, density and energy barrier
strength for GBs and the standard deviation and correlation
length for SR. The matrix element contribution from GBs
is based on the MS model [6], while the SR contribution
originates from Ando’s model [8]. We do not narrow down
the SR description to the infinite barrier limit, also known as
the Prange-Nee (PN) approximation, because it neglects the

wave function penetration in the barrier and this approximation
becomes worse when the wire dimensions decrease. Instead,
we solve the matrix elements of Ando’s model analytically,
without expanding them for small SR sizes, but rather making
use of SR distribution functions on a finite domain.

II. MODEL

The model presented here is based on the subband de-
pendent BTE and FGR for the scattering rates. The effective
mass approximation for the conduction electrons is assumed,
together with zero temperature and a small electric field, such
that the following system of equations has to be solved to
obtain the resistivity or conductivity:
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with τ the RT of an electron state at the (size-dependent) Fermi
level (see Fig. 1), me the (effective) electron mass, kz the wave
vector along the transport direction (z) and 〈. . .〉V an ensemble
average over the considered scattering potentials (not to be
confused with bra- and ket-state notation). The resistivity is
then given by:
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with Lx/Ly the wire height/width and n labeling the transverse
subband ladders.

A. Grain boundaries

The scattering matrix element for N GBs is given by:
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+∞∫
−∞

dx

+∞∫
−∞

dy ψ∗i (x)ψf (x)ψ∗i (y)ψf (y)

×
N∑
α=1

e−i(k
z
i−k

z
f )zα(x,y), (3)

with ψ(x/y) the wave functions along the confinement di-
rections, UGBLGB the barrier strength of a single GB plane
and zα(x, y) the position of a GB plane along the transport
direction. The MS model only considers GB planes that are
normally oriented w.r.t. the transport direction. In this case
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Fig. 1: The unperturbed nanowire model, shown in (a), is used to calculate the
Fermi level, as shown in (b), using the quantized subbands to fill up the system
to reach the proper electron density of the considered metal. The subbands
for two nanowires with square crosssection are shown below, corresponding
to (c) D ≈ 3.6 nm (d) D ≈ 3.25 nm simulation result in Fig. 3. Note the gap
between positive and negative wave vector states at the Fermi level in (d).

zα(x, y) is equal to a constant z0α, but we also consider tilted
planes that satisfy:

zα(x, y) = z0α + βx+ γy, (4)

with real parameters β and γ. The averaging over different
GB plane configurations is performed using the following GB
plane distribution function:
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with σGB the GB position standard deviation. The tilt angles
can be considered to be fixed or variable. In the latter case, a
distribution function for the parameters β, γ is also required.
In this work a uniform distribution of β ∈ [−∆β ,+∆β ] with
tilt parameter ∆β is considered with γ = 0, such that the total
averaging procedure can be done analytically.

B. Surface roughness

The matrix element for SR of the x = 0 -boundary is given
by:

〈i | V x=0
SR | f〉 =
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with U the height of the potential well outside the nanowire
relative to its interior and Sx=0 a SR function giving the height

of the rough nanowire boundary w.r.t. the smooth unperturbed
wire boundary. The PN approximation consists of an expansion
of the expression for small SR sizes, such that the integration
over x can be approximated to be proportional to Sx=0, and an
infinite potential well limit. In the expression for the scattering
rate a product of two SR functions appears and the averaging
procedure consists of replacing the SR function product by its
expectation value:

〈S(r)S(r′)〉 = ∆2C(r, r′), (7)

C(r, r′) ≡ exp

[
−|r− r′|2

Λ2/2

]
,

with r, r′ two positions on the unperturbed boundary. It can
be questioned whether the expansion for small SR sizes
works well, because the wave functions in the confinement
directions might oscillate heavily. Instead of expanding the
integral with the SR function, we average over the full integral
with a distribution function for the SR height at two different
positions: f(S, S′). The natural choice, a bivariate normal
distribution function,
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 ,
does not allow for an analytical solution [9]. Therefore we
propose two distribution functions on a finite domain (FD 1
and 2) that allow for an analytical treatment of the scattering
rates:

fFD 1(S, S′) =

{
1 + 4C(r, r′)/3, if sign(S) = sign(S′)
1− 4C(r, r′)/3, if sign(S) = −sign(S′)

,

fFD 2(S, S′) = 1− C(r, r′) + δ (S − S′)C(r, r′), (9)

while |S|, |S′| <
√

12∆ and zero otherwise, hence the name
distribution functions on a finite domain. It can be easily
checked that both distribution functions satisfy Eq. 7.

III. SIMULATION RESULTS

All simulation results are obtained for copper nanowires
with square crosssection Lx = Ly = D, conduction electron
density ne = 8.469× 1028 m−3, bulk Fermi level EF = 7 eV
and lattice constant aCu = 0.361 nm.

A. Grain boundaries & surface roughness

In Fig. 2 the GB resistivity contribution is shown and
it follows a ρ ∝ 1/Lx/y scaling. This scaling comes from
the size-dependent average distance between two GB planes,
Lz/N , considered to be proportional to Lx/y . This type of
dependence on Lz/N typically appears with today’s process-
ing techniques [2]. When the GB planes are uniformly tilted,
away from the perpendicular orientation of the MS model,
the resistivity decreases substantially (see Fig. 2 (a)), while
the decrease is much smaller if the GB plane tilt is random
(see Fig. 2 (b)) [10]. Subband effects are only visible in the
uniformly tilted case when the deviation from the normal
MS orientation is large enough, resulting in small deviations
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Fig. 2: The resistivity contribution due to GB scattering is shown with (a) all
GB planes tilted under an angle θ = arccot(β) (γ = 0) w.r.t. the x = 0
-boundary and (b) all GB planes tilted under a random angle (tilt parameter
∆β ) [10]). In (c) a D ≈ 3.6 nm nanowire with non-tilted GB planes is
simulated for different values of Lz/N and the same nanowire is simulated
for different values of UGBLGB in (d). The remaining input parameters in (a-d),
if not varying, are fixed at: UGBLGB = 1.5 eV·aCu, Lz/N = D, σGB = D/4.

from the ρ ∝ 1/Lx/y behavior. The resistivity scaling due
to average distance between GB planes Lz/N and GB barrier
strength UGBLGB is shown in Fig. 2 (c-d) and obeys ρ ∝ N/Lz ,
ρ ∝ (UGBLGB)2. A change of standard deviation σGB has
negligible impact on the resistivity, as long as it is of the same
order of magnitude as Lz/N . In the limit σGB → 0, a perfect
periodic superlattice is achieved and the resistivity goes to zero
as expected, but this situation is unrealistic for random GBs
and is therefore not considered in this work.

For SR scattering, the newly introduced finite domain
distribution functions are compared with a first order and PN
approximation of Eq. 6 in Fig. 3 (a), showing good agreement
of the two new methods while PN and the first order approxi-
mation show substantial deviations. The subband quantization
has a large impact on the SR resistivity contribution which
makes it difficult to extract a simple resistivity scaling law
as a function of the height or width. The dependence on
SR standard deviation ∆ and correlation length Λ is slightly
clearer and shown in Fig. 3 (c-d), although simple power law
scaling is not observed. Even if the standard deviation is an
important parameter and has an important influence on the
resistivity, the correlation length has an even larger impact.
The resistivity is exponentially suppressed when the correlation
length increases.

B. Self-consistent relaxation times & Matthiessen rule

An important remark concerning the multi-subband BTE
method is that the RTs should be calculated self-consistently
to obtain correct results. Approximating the RT ratio of initial
and final state on the right-hand side of Eq. 1 by one or even
zero often fails to give a good result in a nanowire (see Fig. 4
and Fig. 5). Note that replacing the ratio by one works fine
for the MS model (without GB plane tilt) because there is

(a)
(b)

(c) (d)

Fig. 3: The resistivity contribution from SR scattering is shown in (a-b)
using the PN approximation (PN), first order approximation (FO) and the
two methods with finite domain distribution functions (FD 1 and 2). The wire
with D ≈ 3.25 nm has a larger than average momentum gap (Fig. 1 (b)) and
a much lower resistivity than the other nanowires. The dependence on ∆ and
Λ is shown in (c) and (d) for a D ≈ 3.6 nm nanowire with use of FD 2.

only scattering to the electron state from the same subband
but with the transport wave vector being flipped, for which
the RT is exactly the same due to reflection symmetry in
the system. Dropping the RT ratio alltogether makes a huge
underestimation of the RTs in the case of SR, while they are
overestimated in the case of GB scattering.

The Matthiessen rule that is often invoked to obtain the
total resistivity can also be tested with the model presented
here. In Fig. 5 one can see the difference between adding
the resistivities separately due to GB and SR scattering at the
end and solving for the resistivity by including both scattering
mechanisms in the collision term in the beginning and solving
for the RTs self-consistently.

C. Highly conductive nanowires

The different methods for SR scattering show resistivity
values that are up to an order of magnitude smaller than the
typical values. The reason for this appears to be a momen-
tum/wave vector gap of the electron states at the Fermi level.
For SR scattering, transitions to states with lowest difference in
wave vector are dominant, thereby suppressing back-scattering
when such a gap (of the order of 1/nm) is present. The
subbands of the D ≈ 3.6 nm and D ≈ 3.25 nm data points
are shown in Fig. 1 (c-d) and their SR resisivity contribution
in Fig. 3 (a-b). The nanowire with wave vector gap has a
much lower resistivity, confirmed by all methods. Interestingly,
the low resistivity value is only visible in the self-consistent
RT solution, as can be seen in Fig. 5 (a). Finally, the effect
remains visible when the GB scattering and bulk resistivity
contributions are included (see Fig. 5 (b)).
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Fig. 4: The RTs of the electron states at the Fermi level are given as a function
of the wave vector (along the transport direction) for (a) SR scattering with
small momentum gap, D ≈ 3.6 nm (b) SR scattering with large momentum
gap, D ≈ 3.25 nm (c) GB scattering with normally oriented GB planes (d)
GB scattering with uniformly tilted GB planes, β ≈ 0.5, θ ≈ 64◦. The RTs
of the multi-subband BTE are shown for a self-consistent solution and the
solutions with RT ratio on the right-hand side of Eq. 1 replaced by zero (RT
ratio = 0) and one (RT ratio = 1).

(a) (b)

Fig. 5: In (a) the resistivity scaling for a nanowire due to SR scattering is shown
for a self-consistent solution and the solutions with RT ratio on the right-hand
side of Eq. 1 replaced by zero (RT ratio = 0) and one (RT ratio = 1). In (b)
different scalings are shown, when only GB scattering is turned on (GB), only
SR scattering turned on (SR), both of them turned on (SR&GB) and adding the
resistivities together (SR+GB). The bulk resistivity has also been added in all
cases. The parameters in both figures are: UGBLGB = 1.5 eV·aCu, Lz/N = D,
σGB = D/4 (in (a) only SR); ∆ = 2aCu ≈ 0.7 nm, Λ = 5aCu ≈ 1.8 nm,
use of distribution function FD 2.

IV. CONCLUSION

In this work a model, based on the multi-subband BTE
is presented that is able to retrieve the resistivity scaling in
metal nanowires, including the quantum-mechanical scattering
and subband quantization effects and without making use of
phenomenological parameters. Both GB and SR scattering are
taken into account and the MS model for GBs is generalized
to tilted GB planes while the description of SR, based on
Ando’s model, is more accurate than PN or other approximate
methods with the use of finite domain distribution functions.
The scattering rates for GBs and SR both have analytical
expressions which allows for simulations of metal wires with
realistic dimensions and having a large number of subbands.

The simulations show a general increasing trend in resis-
tivity for smaller wire dimensions, but the inverse scaling with
width, predicted by FS and MS models, is not valid in general.
For GB scattering, the normal GB plane orientation causes
Umklapp scattering, the worst case scenario due to full current
reversal, resulting in a maximal resistivity contribution from
GB scattering. The resistivity is lowered substantially when
the GB planes are all tilted under the same angle and slightly
lowered when each GB plane is randomly tilted. Crucial
parameters are the GB barrier strength and average distance
between two GB planes. The behavior of SR scattering is more
subjected to quantization effects and resistivity scaling as a
function of height or width is difficult to extract. Both the SR
standard deviation and correlation length have an important
impact on the resistivity, which increases for larger standard
deviation and smaller correlation length.

To tackle the detrimental resistivity scaling in metal
nanowires, GB scattering could be reduced significantly by
reducing the GB barrier strength, increasing the average dis-
tance between two GB planes or inducing an overall tilt of the
GB planes. The resistivity due to SR is hard to tackle, as small
correlation lengths have the largest contribution. Even if the
quality of the nanowire increases and the standard deviation
can be kept under control, the exponential dependence on
the correlation length would still cause a substantial contri-
bution from intrinsic atomic-scale SR. However, by tuning
the subbands at the Fermi level in such a way that left- and
right-movers have a substantial gap between them, the SR
contribution can be largely suppressed.
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