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Abstract—In addition to its high mobility, the possibility of 
opening sizable bandgaps has made bilayer graphene (BLG) a 
promising candidate for many electronic and optoelectronic 
applications. Yet, the achievable bandgap (300 meV) is not 
sufficient to make BLG a candidate for high performance 
transistors. Vertical strain in conjunction with the vertical field 
can help to achieve a larger band gap in BLG. In this paper, pz 
nearest-neighbor atomistic tight-binding model and Non-
equilibrium Green’s Function (NEGF) method are used to study 
the transport behavior of strained BLG transistors under electric 
field. A field tunable dynamic band gap (DBG) of up to 300 meV 
is found to exist in BLG with no strain in agreement with 
previous reports. By applying strain, one can increase the band 
gap of BLG beyond 300 meV. Finally, the DBG effect and 
vertical strain are shown to be able to enhance the ON/OFF ratio 
of a BLG field effect transistor (FET) to 1000.  
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I.  INTRODUCTION 
Two-dimensional materials have been shown to be good 

candidates for future low power electronics [1-4]. In this 
regard, graphene has attracted great interest due to its 
extraordinary physical, chemical, and electrical properties. Its 
many unique features including a high carrier mobility, easy 
fabrication and lithography make it a promising candidate for 
next generation transistors [1]. However, due to the lack of an 
intrinsic band gap, graphene transistors cannot be turned off. 
To overcome the zero band gap problem, several methods 
have been developed so far: 1) applying a vertical electric 
field to bilayer graphene (BLG) [5], 2) inducing strain on 
graphene [6].  

As predicted by the International Technology Roadmap for 
Semiconductors, silicon field effect transistors (FETs) will 
reach its physical limits in 1-to-2 decades due to short channel 
effects [7]. Graphene FETs need an energy band gap of at least 
400 meV to be a promising alternative of Si [8]. Both 
theoretical, and experimental results show that the maximum 
achievable energy gap induced by electric field in BLG is 
about 300 meV. On the other hand, strain has also been 
demonstrated as a technique to open up a band gap in graphene 
[9]. Here, the transport properties and performance of BLG 
FETs under application of both strain and electric field are 
investigated using atomistic simulations. 

This report first evaluates the bandgap of the BLG from 
tight-binding calculations. A bandgap of 300 meV can be 
created employing a vertical displacement field of 6V/nm in 
this zero bandgap semiconductor. A BLG transistor with a top 
and a bottom gate with opposite biases is considered here to 
exploit this tunable bandgap behavior. The electric field is 
created through the voltage difference of these two gates. The 
transmission of this transistor is shown to follow the 
corresponding electric-field dependent band structure. This 
verifies that the DBG behavior is captured in the transport 
model.  

To include the strain effect in atomistic simulation, 
Boykin’s model is used [10]. It is shown that strain further 
increases the band gap of BLG in addition to the vertical field. 
The saturation band gap value increases with an increasing 
vertical strain. Thus, the ON/OFF ratio also increases with a 
vertical strain. 

The simulation results reveal the following facts about 
performance of BLG FETs in room temperature: 1) an 
ON/OFF ratio of 100 can be achieved in the double gated 
BLG FETs without strain and 2) a vertical strain of 9% can 
increase this ON/OFF ratio to 1000. 

II. METHOD 
Here, the AB (Bernal) stacking BLG Hamiltonian is 

constructed based on the pz nearest-neighbor atomistic tight-
binding model. Perpendicular strain ε, associated with a 
change from the interlayer distance c to c’ = c(1+ε) is also 
included. Here c equals 0.335nm. The whole Hamiltonian 
including vertical strain can be expressed as [10]: H
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(1) 

The variation of hopping parameter ୄݐ  with interlayer 
distance c, డ௧఼డ௖  is estimated using Boykin’s model [11]. ݒி  is 
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the Fermi velocity of graphene, 1 ൈ 10଺݉/
in Ref. 10. ߶ሺ݇ሻ equals గ଺ at Dirac point. 

Bilayer graphene FETs have been simulat
consistent Poisson-Non-Equilibrium Gr
(NEGF) method through our Nano-Elec
(NEMO5) tool [13-15]. The material prope
Table I. 

Table I: Bilayer graphene material propertie
induced bandgap Eg, electron effective mass
out-plane relative dielectric constant ߳௥௜௡ and
are obtained from the bandstructure calculat߳௥௢௨௧ are input parameters to the Poisson equa

Parameters Eg (meV) me* (m0) 
BLG 275 0.038 
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If not stated otherwise, all the simulation res
for a double gated bilayer graphene structure

FIG. 4. Schematic of the double gated bilay
effect transistor used in this work. 

Fig. 5 shows the transfer characteristics
temperature of 300 K obtained from Poisson
Green’s Function (NEGF) method. VDS is
Fermi level is fixed to 0eV. The back gate vo
2V. Despite the band gap increasing with th
(VTG), the device is ON, then OFF, and ON
1, 2 and 3 respectively) with the sweeping
generates a V shaped I-V characteristic. 

From the potential energy at top and 
layers, extracted from self-consistent simu
calculate the conduction and valence band
called “local band structure” here. “Local b
plotted in Fig. 5 by extracting the band ed
cell. Not only does an increase in the top ga
the band edges in the channel, but it a
bandgap. Despite this monotonic increase in
OFF state occurs when the middle of the ba
the Fermi level (shown as (2) in Fig. 5). F
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(shown as (3) in Fig. 5). 
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In the Hamiltonian matrix 
onsite energy of different layer
presented by the constant +V an
vertical strain ε breaks the sym
layer since only one of these 
other layer. Interestingly, the
possibility of opening a strain in
examined this possibility an
conditions strain by itself can oܿ డ௧఼డ௖   .[10] ߝ
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Fig. 6 Band structure of strained bilayer gra
and with (b) vertical field [V/nm]. Left, 
figures correspond to band structures of bila
different strain values. 
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IV. CONC

In conclusion, vertical elect
strain can achieve a larger 
compared to the unstrained c
helps double gate BLG device
ratio. 
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