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Abstract—The effect of electron scattering on the plasma-wave
instability in the channel of GFETs has been studied through
solving the governing hydrodynamic (HD) equations numerically,
which are based on the linear energy-momentum dispersion,
i.e., Dirac cone, of graphene [1]. It is revealed that there
exists a critical scattering strength determined by the carrier
mobility and channel length, above which the instability cannot
be sustained. While analytical solution can only be obtained under
the dissipationless condition, numerical calculation is conducted
considering the scattering term. We conclude that the realization
of room temperature terahertz emitter is possible in GFETs as
long as careful device design and high quality graphene channel
are achieved.

I. INTRODUCTION

The generation of terahertz radiation through plasma-wave
instability in field-effect transistors (FETs) has long been
proposed by Dyakonov and Shur (D-S) if ballistic carrier
transport is assumed [2]. The plasma-wave instability occurs
due to the wave velocity difference caused by the DC drain
current, together with the asymmetric AC boundary condition
arising from the gate-source voltage bias and drain-source cur-
rent bias. Utilizing the instability, room temperature terahertz
emitters can be realized. In the real world, however, there
are always some wave magnitude damping mechanisms in
the channel which reduces the instability, among which the
carrier scattering plays the biggest role. Previous study has
calculated the effect of scattering on the D-S instability [3]
and the analysis on two of the experimental works [4], [5]
has shown the evidence of insufficient mobility for plasma
wave generation in the III-V channel materials used in the
real devices [6]. Thus the exploration of D-S instability in
high mobility channel materials is strongly desirable.

Graphene is a single-layered material with excellent
electronic transport properties. Its honeycomb crystal lat-
tice gives rise to its high sample quality and the potential
for ultra-high room temperature mobility [7]. In encapsu-
lated graphene samples, room temperature mobility exceeding
∼100, 000cm2/V · s is achieved. The extraordinary mobility
and the ease for gate control makes graphene a strong can-
didate as the channel material for the D-S FETs. However,
because of the linear band profile in graphene, constant effec-
tive mass can not be introduced as in the case of parabolic
band. As a result, the hydrodynamic equations describing the
dynamic of electrons in the graphene channel are different
from those used in the initial proposal of D-S theory. The
immediate consequence of this bandstructure difference is
a smaller wave velocity mismatch at the drain end of the

channel under same drain current, which results in a smaller
growth rate of the plasma-wave amplitude in the ballistic case
[1], leading to a rather dim projection of using GFETs for
THz generation through D-S instability. When scattering is
considered, however, the excellent mobility in graphene may
offer a compensation for the smaller instability effect and may
lead to promising realization of room temperature terahertz
emitters.

In this study, we analyze the effect of scattering on
the D-S plasma-wave instability in GFET through numerical
methods and discuss the feasibility of utilizing GFETs as
room temperature terahertz emitters. We show that the plasma-
wave instability is indeed reduced by the scattering effect and
we calculate the critical scattering strength above which no
instability occurs. Based on the critical scattering strength, we
compute the room temperature mobility requirement and find
it achievable in high quality graphene samples.

II. METHOD

The form of the HD (hydrodynamic) equations describing
the dynamic of the electrons in gated-graphene is adopted from
[1], which are derived from the Boltzmann transport equation
taking the linear energy-momentum dispersion into account
and assuming a displaced Fermi-Dirac (F-D) distribution f ={

exp
[
ε(k)−h̄k·v−µ

kBT

]
+ 1
}−1

with v the electron drift velocity
and µ the chemical potential. The electron sheet density n and
its flow density j can be expressed by [1]

n =
nv=0

[1− v2/v2
F ]3/2

, (1)

j = nv (2)

where nv=0 is the static density (i.e. the density when the drift
velocity is zero) solely determined by µ (w.r.t. the Dirac point
where µ = 0) and T : nv=0 = 2(kBT )2

πh̄2v2
F

∫∞
0

tdt
1+et−µ/kBT

. Uti-
lizing the gradual channel approximation, the hydrodynamic
equations governing n(x, t) and v(x, t) in the 1D channel read

∂n

∂t
+
∂(nv)

∂x
= 0 (3)

∂v

∂t
[1 + θ] + v

∂v

∂x
[(3− 4ξ)− θ] +

∂n

n∂x
s0
′2 = − v

τp
(4)

where ξ = F1( µ
kBT

)2/2F2( µ
kBT

)F0( µ
kBT

) and θ = β2(5−6ξ)
1−β2

are dimensionless coefficients determined by µ/kBT and
the dimensionless drift velocity β = v/vF (Fj(x) =

1
Γ(j+1)

∫∞
0

tj

et−x+1dt is the Fermi-Dirac intergral of order j
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(j = 0, 1, 2)). s′0 is another coefficient representing the plasma-
wave velocity

s′0 = vF

√
2ξ

3

(
1− β2 +

e2〈ε−1〉
Cox

)
(5)

where Cox is the gate capacitance and 〈ε−1〉 =
2kBT ln (1 + eµ/kBT )/πh̄2v2

F

√
1− β2 is the density of in-

verse energy [1]. In order to examine the effect of scattering,
a dissipative term −v/τp is added to the right hand side of
the Euler equation (Eq. 4) with τp the effective momentum
relaxation time.

Obviously, the HD equations in gated-graphene has more
complex form than those in parabolic band semiconductors as
used for the original D-S instability proposal. More impor-
tantly, Eqs. (3-4) are not closed for the two variables n and
v to be solved, i.e., there are more variables than equations.
Specifically, the coefficients ξ, θ and s′0 all depend on the
chemical potential µ (the temperature T can be taken as a
constant), which can not be explicitly expressed in the two
variables n and v. In principle, the heat-transfer equation as
shown in [1] should be included to fully characterize the
problem. However, the involvement of such an equation will
pose difficulty on setting the boundary condition for the energy
density, which is neither set directly by the DC bias nor easily
measured.

Therefore, we limit our discussion based only on Eqs.
(3-4). Overall, two variables: electron sheet density, n, and
electron drift velocity, v, are to be solved with boundary
conditions

n(0, t) = const, (6)
j(L, t) = n(L, t)v(L, t) = j0 = const (7)

where L is the channel length. For dissipationless case as dis-
cussed in [1], the lack of a third equation for the problem does
not introduce any difficulty, since the steady-state distribution
of all the variables and coefficients are constant along the
channel, thus ξ, θ and s′0 can be taken as constants in Eq. (4)
when doing time-dependent analysis. However, in our case,
the dissipative term −v/τp in Eq. (4) leads to non-uniform
distribution of the variables n and v as well as a position-
dependent µ and the coefficients associated with it, making
analytical treatment impossible in both the steady-state and
the time-dependent analysis.

We use two different methods to tackle this issue. The first
one is to treat the coefficients ξ, θ and s′0 as of constant values,
as long as the dimensionless scattering strength measured by

γ =
L

vF τp
(8)

is small.

The second method utilizes the asymptotic form for the
Fermi-Dirac integrals to express µ as function of the solution
variables n and v. When x → ∞, F0(x) → x, F1(x) →
x2

2 , F2(x) → x3

6 . Using these asymptotic expressions, ξ [1]
and 〈ε−1〉 can be written as functions of n and v under the

condition of µ/kBT � 1

ξ =
3

4
− 3nT

2nv=0
, (9)

〈ε−1〉 =
2
√
n√

πh̄vF
(1− β2)1/4 (10)

where nT is the density of thermally activated electrons at
µ = 0.

In this way, coefficients ξ, θ and s′0 become n, v dependent
only and Eqs. (3-4) are now enough for solving n and v. The
steady-state solution n0(x) and v0(x) are easily obtained by
setting the time derivatives to be zero in Eqs. (3-4). Note that
this method requires µ/kBT � 1. It is found that the error is
less than ∼10% for µ/kBT ≥ 7.

As in [2], the time-dependent solutions are expressed
as the sum of the steady-state solution and time-harmonic
perturbations

n(x, t) = n0(x) + n1(x) exp(−iωt), (11)
v(x, t) = v0(x) + v1(x) exp(−iωt), (12)

The real part ω′ of the complex angular frequency ω =
ω′+ iω′′ is related to the oscillation frequency of the plasma-
wave with ω′ = 2πf . The imaginary part ω′′ is the rate of
increment of the plasma-wave amplitude (wave increment).
The goal is to find ω′′, which is obtained from our simulation
program modified from our previous work [6] solving for the
time evolution of the initial perturbation on n and v

n1(x) = A0 sin (πx/L), (13)
v1(x) = 0 (14)

In order to compare the simulation results to some ana-
lytical solutions, the low scattering limits are derived. Under
β0 � 1, γ � 1, the wave increment can be analytically
calculated from Eqs. (3-4)

ω′′ =
vF
L

[
2β0(1− ξ)− γ

2

]
(15)

We define the critical scattering strength γcr to be the max-
imum scattering strength above which no plasma-wave insta-
bility occurs, i.e., the wave increment ω′′ becomes zero. It
follows that

γcr = 4β0(1− ξ) (16)

III. RESULTS AND DISCUSSION

For the simulated GFET, a typical gate capacitance Cox =
4.4 × 10−7F/cm2 (EOT = 7.8nm) is assumed, e.g., with
a dielectric constant of 10 and a thickness of 20nm. Room
temperature condition (T = 300K) is assumed. With the use of
dimensionless parameters γ and (L/vF )ω′′, the results apply
to arbitrary channel length.

Fig. 1 shows the effect of different scattering strength
γ on the wave increment ω′′ for a fixed chemical potential
µ = 7kBT at the source end, corresponding to a static electron
sheet density of ∼2.6 × 1012cm−2. The wave increment is
plotted against the normalized drift velocity at the source end
which represents the current bias applied to the drain. The
black solid line is the theoretical result with no scattering
[1], which is well-matched by our simulation results (black
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Fig. 1. Effect of different scattering strength γ on wave increment ω′′
for fixed source end chemical potential of µ = 7kBT . Dotted line is the
low scattering limit (15) for γ = 0.1 which is well-matched for small β0
values. Crosses and connected dots represent simulation results based on
approximation method 1 and 2, respectively. The theoretically result in [1]
for γ = 0 is matched by our simulation results. The discrepancy between
method 1 and 2 becomes appreciable only when γ > 0.4, indicating that
method 1 is a good approximation although crude in nature. The error arising
from the asymptotic expressions (Eqs. 9-10) is already excluded for a better
comparison of the two methods.

crosses), indicating the correctness of our simulation program.
For γ > 0, two different approximation methods are used as
indicated in the previous section. As expected, the wave incre-
ment decreases as the scattering becomes stronger. Superior
behavior is observed as graphene does not incur the choking
effect at large drain current bias (reflected by β0 = v|x=0/vF )
as in conventional semiconductor FETs [3], [8]. Also, our
theoretical prediction Eq. (15) for low scattering limit is well-
matched for γ = 0.1. Note that the discrepancy between ap-
proximation methods 1 and 2 is becomes appreciable only for
γ > 0.4, where the steady-state distribution of the coefficients
and variables deviates from uniform distribution to a non-
negligible extent due to strong scattering effect.

The critical scattering strength γcr defined before can also
be simulated for each drain current bias. Such threshold for
the instability is computed in a typical bias condition, e.g.,
β0 ≤ 0.6 as shown in Fig. 2. It can be seen that small source
end chemical potential µ and high source end drift velocity β0

allows for high γcr, but the differences incurred by µ is small.
Again, the low scattering limit (Eq. 16) is well-matched for
small γ value. Surprisingly, a good match is observed even for
large γ, rendering Eq. (16) a good expression for estimating
γcr.

Based on the simulated critical scattering strength, the
room temperature mobility requirement and the design rule
of the channel length for desired oscillation frequency can be
computed. In graphene, the electron mobility ( we use µm to
avoid confusion with the chemical potential µ) is related to τp
via µm = ev2

F τp/EF [9], where EF is the Fermi energy. After
using the zero temperature expression n = E2

F /π(h̄vF )2, we

Fig. 2. The critical value of the scattering strength γcr vs. the normalized
drift velocity β0 for different values of source end chemical potential. Method
2 is used when µ/kBT = 7, 10, respectively. Straight dotted lines are the
low scattering limit (Eq.16), which match well with the simulated γcr at low
γ0, even at higher γ0, rendering Eq. (16) a good expression for estimating
γcr .

get the expression for µm

µm =
evF

h̄
√
π
√
n
τp (17)

Eq. (17) can be cast to another form by using the definition
for the scattering strength (Eq. 8)

µm =

(
e

h̄
√
π
√
n

)
L

γ
(18)

Thus, for a fixed scattering strength γ, the mobility requirement
is proportional to the channel length. The oscillation frequency
f can not be analytically expressed once the scattering is
taken into account. We can estimate the frequency using the
expression in the ballistic case [1]

f =
m

4L

s′20 − v2
0(3− 4ξ − θ)√

s′20 (1 + θ) + v2
0(2ξ − 1 + θ)2

(m = 1, 2, 3, · · · )

(19)
where m denotes the mode number. Normally, the steady-state
drift velocity v0 is set no bigger than 0.6vF , thus the v2

0 terms
in Eq. (19) can be neglected for a rough, yet simpler estimation
of the oscillation frequency of the first mode

f ' s′0
4L

(20)

As for the wave velocity coefficient s′0, we refer to Eq. (5)
and do some simplifications as such: under a typical density
of n ∼ 1012/cm2, ξ is around 0.7, so 2ξ/3(1−β2) is estimated
as 0.4; 〈ε−1〉 can be estimated by taking ln (1 + eµ/kBT ) to
be µ/kBT in its detailed expression. We thus arrive at

s′0 ' vF

√
0.4 +

3

Cox(×10−7F/cm2)
·
(

µ

kBT

)
(21)

From Fig. 2, the value of the critical scattering strength
γcr is evaluated roughly as 0.5 from the current bias of β0 ∼
0.5 where the largest wave increment under no scattering is
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Fig. 3. Dependence of mobility requirement and plasma-wave frequency on
channel length, under typical sheet density of n = 1012cm−2. The required
mobility increases with the increase of L, while the plasma-wave frequency
decreases. Increasing the gate capacitance reduces f at fixed channel length.
1THz operation is indicated by the dash line.

located. Based on this value, the dependence of the required
mobility and the plasma-wave frequency on the channel length
is computed and shown in Fig. 3, assuming a typical electron
sheet density n = 1012cm−2 . The 1 THz operation condition
is marked by the dash line. It can be seen from Fig. 3 and the
expression for s′0 that for a fixed channel length, the plasma-
wave frequency can be tuned by changing the gate capacitance
and the chemical potential µ, which is in turn set by the gate-
source voltage bias in a way where the quantum capacitance
plays a non-negligible role. Under the condition of a fixed
electron sheet density in Fig. 3, a larger Cox will lead to a
shorter channel length at a fixed operation frequency, allowing
for lower room temperature mobility requirement.

A numerical example can be given. For a device with
Cox ∼ 4×10−6F/cm2 (EOT = 0.86nm) and n = 1012cm−2,
1 THz plasma-wave frequency can be achieved by having the
channel length to be 180nm, which means a room tempera-
ture mobility requirement of ∼32, 000cm2/V · s. As discussed
above, the mobility requirement can be lessened by shortening
the channel length. But it will also lead to a higher frequency
unless larger Cox is simultaneously achieved.

IV. CONCLUSIONS

The hydrodynamic equations in graphene with the scat-
tering term considered has been numerically studied in order
to investigate the effect of scattering on the D-S plasma-wave
instability in GFETs, which has the potential for realizing room
temperature solid-state terahertz emitters. We show that the
plasma-wave instability is indeed reduced by the scattering
effect and we calculate the critical scattering strength above
which no instability will occur. The feasibility of GFETs-
based room temperature terahertz emitters has been discussed
by numerical examples. We found the mobility requirement to
be proportional to and the plasma-wave frequency inversely
proportional to the channel length. The frequency can be

further adjusted by the gate capacitance as well as the gate-
source voltage bias. Using the calculated critical scattering
strength, we found the required room temperature mobility
to be around several 10, 000cm2/V · s for the plasma-wave
frequency of 1 THz. Even though the requirement is high, it is
achievable in high quality graphene samples due to graphene’s
extraordinary transport properties.
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