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Abstract— In this paper, transverse magnetic (TM) 

propagation modes of surface plasmon polaritons (SPPs) in 
graphene micro/nano ribbons are exhaustively characterized by 
accounting for the finite lateral dimensions of graphene, 
screening of Fermi level in multilayer graphene stack, and the 
impact of dielectric permittivity and the associated charge 
impurities at the dielectric-graphene interface. Fermi level 
screening leads to a non-uniform carrier density across multiple 
layers, which changes the electron relaxation rate and 
considerably alters the complex dynamical conductivity of 
multilayer GNRs. It is shown that ignoring the screening effects 
in multilayer GNRs overestimates both the SPP propagation 
length and its propagation velocity. Graphene plasmonic 
interconnects are envisaged as low energy, high frequency on-
chip interconnects for future technology nodes. Simulations are 
performed over a broad frequency spectrum to identify the 
merits of future graphene plasmonic interconnects over the 
conventional electrical Cu/low-κ at a minimum feature size of 10 
nm. Using energy-per-bit as a figure-of-merit, a range of SPP 
propagation lengths is identified for graphene plasmonic 
interconnects to outperform Cu interconnects.  

Keywords— Graphene nanoribbons, surface plasmon 
polaritons, plasmonic interconnects,  

I. INTRODUCTION  

II. PLASMON DISPERSION RELATIONSHIP IN GRAPHENE 
In this work, we consider a graphene sheet embedded in a 
dielectric environment as shown in Fig. 1. To obtain the 
dispersion relation for transverse magnetic (TM) surface 
plasmon polaritons (SPPs) supported by graphene, we solve 
Maxwell’s equations with appropriate boundary conditions. 
For TM SPPs propagating along the x- direction as indicated 
in Fig. 1, electric field has components in both x- and z- 
directions, while the magnetic field lies in the y- direction. 
Due to its finite non-zero conductivity, graphene imposes an 
impedance boundary condition in Maxwell’s equations. For 
TM plasmons, the dispersion relation is given as [1] 
 

!!

ε1

β 2 −ε1
ω
c

⎛
⎝⎜

⎞
⎠⎟

2
+

ε2

β 2 −ε2
ω
c

⎛
⎝⎜

⎞
⎠⎟

2
= −i

σ ω( )
ωε0

  

(1) 

where β denotes the plasmon propagation constant, ε1 and ε2 
are the dielectric constants of the surrounding media, ω is the 
operation frequency, c is the speed of light, ε0 is the 

permittivity of free space, σ(ω) is the complex AC electrical 
conductivity of graphene, where non-local effects are not 
considered. Note that (1) does not make any approximations 
of the non-retarded regime of operation for SPPs as done in 
previous works 13]. The plasmon dispersion relation can be 
used to obtain the propagation velocity as vg = ∂ω/∂[Re(β)] 
and propagation length Lprop = 1/Im(β) of plasmons. The Im(β) 
is related with Ohmic losses in graphene and mathematically 
described using a phenomenological parameter Γ in the 
conductivity description as given in the next sub-section (See 
Eqs. (2)-(5).)  
 

 
Figure 1: Graphene sheet embedded in dielectric with dielectric 
constants ε1 and ε2. The electrical conductivity of graphene is denoted 
with σ1. The SPPs in graphene propagate in x-direction. 

A. Complex dynamical conductivity in graphene and electron 
scattering rate 

The net complex dynamical conductivity of graphene is given 
by the sum of its intra-band and inter-band components. In the 
presence of inter-layer screening, the conductivity of 
multilayer graphene is given as [2] 
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where e is the elementary charge, Ef ,j is the Fermi level in the 
jth layer, kBT is the thermal energy and Γj is a 
phenomenological parameter that characterizes the electron 
disorder scattering processes in graphene in the jth layer, and 
Nlayer is the total number of layers in the multilayer graphene. 
An estimate of Γ is obtained from the D.C. relaxation time, 
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which arises mainly from scatterings due to intrinsic phonons 
and charges impurities of the substrate. For narrow ribbons, 
electron scatterings due to edge roughness are also significant 
and must be accounted for in the description of Γ. 
Phonon scattering in graphene fundamentally limits the 
mobility of carriers. In its simplest form, the scattering rate 
due to acoustic phonons, Γac, is given as [3] 
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where Dac is the acoustic deformation potential (≈ 9 eV), vf = 
8×105 m/s is the Fermi velocity of Dirac fermions in graphene, 
and vph is the speed of acoustic phonons in graphene.  
The scattering rate due to charged impurities at the interface 
between graphene and the substrate is given as [3] 
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where Nimp is the impurity concentration, Ze is the net charge 
of the impurity atom, ρ(Ef) is the 2D density-of-states of 
graphene at Fermi level, and kF is the Fermi wave-vector. The 

2D density-of-states in graphene is given as 𝜌 𝐸! =
! !!

! ℏ!!
!  . 

Finally, scatterings due to edge roughness in narrow ribbons 
are modeled using an edge scattering coefficient, PGNR that lies 
between zero and unity.  The electron relaxation rate due to 
edge roughness scatterings is given as [4] 
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Where Esub,m is the energy of the bottom of the mth sub-band in 
the graphene ribbon. The net electron relaxation rate is given 
by using the Mattheissen’s sum rule. That is, Γnet = Γac + Γimp + 
Γedge. 
 
The Fermi level in the jth layer in (2) depends on the screening 
length, λs. For a large screening length (λs ! ∞), all layers are 
perfectly coupled such that σmulti = Nlayerσmono, where σmulti 
corresponds to the conductivity of multilayer graphene and 
σmono denotes the conductivity of monolayer graphene. 
However, a small screening length leads to degradation in 
carrier concentration in upper layers in the multilayer stack for 
which the Fermi level drops significantly. Note that 0.35 nm 
in the formulation of Ef,j denotes the inter-layer screening 
between the multiple layers in graphene.  
The relationship between the Fermi level and the carrier 
concentration in graphene is obtained using the Fermi Dirac 
integrals given as 
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Here, σdis is the broadening in eV of the DOS around the Dirac 
point [5]. 
 
Figure 2 shows the both the real and the imaginary 
components of σintra and σinter as functions of frequency, ω, and 
the Fermi level, Ef0. Inter-layer screening is not considered in 
this plot. It is evident from this figure that inter-band 
conductivity plays a role only when ω > 2ωf, where ωf is the 
frequency corresponding to the Fermi level in graphene. 
Hence, in the frequency region of interest (the THz  band) in 
this work, we ignore the contributions from inter-band 
scatterings in graphene.  

  

  
Figure 2: Real (left panel) and imaginary (right panel) components of 
intra-band (top row) and inter-band (bottom row) conductivity in 
graphene. 
 
In Fig. 3, the impact of Ef-screening on σintra(ω) is analyzed. 
For screening length, λs = 0.6 nm, only up to two layers 
contribute significantly to the overall conductivity; however, 
for relatively small screening (λs = 6 nm), up to five layers 
contribute to the total conductivity and beyond that the 
conductivity saturates as a function of Nlayer. For multilayer 
graphene to be profitable compared to monolayer graphene, it 
is important to have a large screening length, which can be 
obtained by chemically doping all the layers in a multilayer 
stack.  
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Figure 3: Real part (left) and imaginary part (right) of conductivity 
contribution from the different layers in multilayer GNR for different 
screening lengths. 
The impact of dielectric permittivity and the interface charged 
impurities on the SPP resonant frequency for TM modes is 
shown in Fig. 4. It is emphasized that using an approximate 
NR regime expression (shown in circles) of TM modes leads 
to inaccurate resonant frequencies below a few THz. Hence, in 
this work we use the complete description of the dispersion 
relationship of TM modes as given in (1).  

 
Figure 4: Resonant frequency of SPP plasmons as a function of 
Re(β). NR-approximation becomes highly inaccurate for lower 
frequencies and wave-vectors. The inset shows the relation between 
resonant frequency and Im(β). 

 
Propagation length is an important figure of merit for 
plasmonic interconnects. Propagation length is defined as the 
length at which the initial energy of the surface plasmons 
degrades to 37% of their initial energy. A large plasmon 
propagation length is desirable as it signifies a lower 
interconnect energy dissipation. In Fig. 5, we plot the 
propagation length, Lprop, of SPPs in multilayer graphene for 
different values of the screening length λs. It is seen that Lprop 
saturates with Nlayer for small λs and is 60× lower than the 
propagation length for a large λs. One way to overcome the 
degradation in carrier concentration ns due to finite λs is to 
explore chemical doping of all the layers in graphene 
multilayer stack. Further, scatterings due to edge roughness 
can severely degrade Lprop for a given λs as also demonstrated 
in Fig. 5. The degradation in Lprop has a significant impact on 
the performance and energy-per-bit of on-chip plasmonic 
interconnects as discussed in Section III.  

III. PERFORMANCE ANALYSIS OF GRAPHENE PLASMONIC ON-
CHIP INTERCONNECTS  

To assess the performance of on-chip local interconnects, the 
metrics we use are interconnect delay (τD), signal drive  

 
Figure 5: Fig. 5: Propagation length of TM SPPs in graphene @ 1 
THz in h-BN dielectric as a function of the number of layers. PGNR 
denotes the edge-roughness coefficient. PGNR = 0 (specular 
scattering). PGNR =1 (diffusive scatterings). 
 
distance (SDD), and energy-per-bit (Ebit) for local 
communication. SDD is a more powerful, scalable metric to 
understand the increasing wire delays and is defined as the 
interconnect length for which the delay through the 
interconnect segment matches the intrinsic gate delay [6].  
The propagation delay for Cu/low-k interconnects is modeled 
using the circuit shown in Fig. 6, while for plasmonic 
interconnects, the interconnect delay is given as τSPP = L/vg, 
where vg is the group velocity of TM surface plasmons. For 
plasmonic interconnects, we only account for the delay 
associated with the interconnect, while switches are assumed  
to be ideal, allowing us to obtain an upper bound on their 
performance.  
 

 
Figure 6: The schematic of the CMOS system with a CMOS driver, 
an interconnect, and a CMOS load (top). The equivalent circuit 
representation of the CMOS system (bottom).  

Figure 7 shows a comparison of the propagation delay for both 
Cu/low-k and SPP interconnects at a width of 10 nm. An 
increase in the frequency of operation leads to a degradation in 
the plasmon propagation velocity. Hence, the delay of 
plasmonic interconnects increases with an increase in the 
operating frequency. However, for a signal at 1 THz, the best-
case performance of plasmonic interconnects is more than two 
orders of magnitude superior than Cu interconnects.  
In Fig. 8, the SDD for plasmonic interconnects is obtained as a 
function of the SPP propagation velocity and the ratio of 
delays of CMOS and plasmonic switch. As the interconnect 
delay increases, SDD decreases necessitating the insertion of 
buffers. Conversely, a larger SDD means that there is less 
disparity in the delays of devices and interconnects.  
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Figure  7: Delay versus interconnect length for both electrical and 
plasmonic interconnects. Due to a reduction in the propagation 
velocity of SPPs in graphene at higher frequency and lower Ef, the 
delay of plasmonic interconnects increases for higher frequency 
and/or lower Ef. 

 
Figure 8: SDD versus propagation velocity of SPPs and the ratio of 
the delay of CMOS and plasmonic switch. 
 
The energy-per-bit of both interconnects is given as 
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where <m> denotes the average number of plasmons needed 
to represent a logic bit. Shot noise limited detection of an ideal 
coherent noise source with a mean number of <m> plasmons 
for state “1” and “0” results in a bit error rate of 0.5exp(-
<m>). If the bit error rate is equal to 10-30, then mean number 
of plasmons <m> is equal to 68 [7].  

As seen from (7), the energy-per-bit of plasmonic 
interconnects increases exponentially with interconnect length, 
while that of electrical interconnects increases linearly with 
interconnect length. For a fixed SPP propagation length, the 
ratio of Ebit of electrical and plasmonic interconnects degrades 
with interconnect length, Lint as shown in Fig. 9. Plotting 
constant contours of Ebit(electrical)/Ebit(plasmonic) in Fig. 10 
shows that for a given frequency of operation of plasmonic 
interconnects, there necessarily exists a maximum ratio of 
Lint/Lprop. The shaded region between different contours 
indicates the energy budget that can be allocated toward 
plasmonic switches and other energy transducers in a 
heterogeneous electrical-photonic logic framework. 

 

 
Figure 9: Ratio of energy-per-bit of Cu and plasmonic interconnects 
as a function of interconnect length for an interconnect width of 10 
nm. In the shaded region, Cu interconnects outperform plasmonic 
interconnects. 

 
Figure 10: Constant η = Ebit(electrical)/Ebit(plasmonic) contours. The 
shaded regions between contours denote the energy budget available 
to be allocated toward computation in plasmonic domain and 
transducers for energy conversion. The desired frequency band of f < 
100 THz to avoid inter-band losses. 

IV. CONCLUSIONS 
In this paper, we have provided comprehensive modeling of TM 
SPP plasmon modes in graphene nanostructures and evaluated 
their performance for future high-speed, low-power on-chip 
interconnects. The physics-based modeling approach considered 
in this work accurately accounts for Fermi-level screening in 
multilayer graphene stack, edge roughness in narrow ribbons, and 
impact of dielectric permittivity on plasmon response.  
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