
Electrothermal simulation of ultra-scale MOSEFT

Thi Thu Trang Nghiem, Jérôme Saint-Martin, Philippe Dollfus 
Institute of Fundametal Electronics, UMR 8622 CNRS, Univ. of Paris-Sud, Orsay, France 

e-mail: jerome.saint-martin@u-psud.fr  
 
 

Abstract— To investigate self-heating effects in double gate 
MOSFETs, a simulator solving self-consistently the Boltzmann 
transport equations (BTE) for both electrons and phonons has 
been developed. A Monte Carlo (MC) solver for electrons is 
coupled with a direct solver for the phonon transport. This 
method is particularly efficient to evaluate accurately the phonon 
emission and absorption spectra in both real and energy spaces. 
The resulting degradation of the I-V characteristics is estimated 
for a 20 nm-long Double-Gate MOSFET. 
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I.  INTRODUCTION  

Heat conduction/dissipation and self-heating effects are 
taking an increasing place in the design of solid-state devices 
and circuits. The mean free path (MFP) of phonons, the 
pseudo-particles associated with the lattice vibrations, is 
typically estimated to be 300 nm at room temperature in silicon 
[1]. On distance scales larger than the MFP, the phonon system 
remains close to thermal equilibrium and may be well 
described by the classical Fourier heat equation. However, in 
modern electronic devices the length of the active region is in 
the order of a few tens of nanometers and in the presence of a 
perturbation, phonon scattering events are too rare for the 
system to recover local thermodynamic equilibrium. Thus, in 
such devices the use of a macroscopic description of thermal 
transport as the Fourier heat equation is questionable. In this 
case, the phonon Boltzmann transport equation (pBTE) is 
much more relevant. 

To capture out-of-equilibrium thermal phenomena, the 
Vasileska and Goodnick group solved the energy balance 
equations of thermal transport to describe the optical phonon 
bottleneck in ultra-short transistors[2] . Kamakura et al. have 
implemented a MC method to solve the BTE for both electrons 
and phonons for 1D Si diodes with simplified phonon 
scattering rates but this approach has not been extended to 
transistors yet [3]. Ni et al. have used the phonon generation 
spectrum extracted from eMC simulation as input for a pBTE 
solver with anisotropic relaxation times and Brillouin zone to 
evaluate the hotspot temperature in a MOSFET[4].  

In this paper, we describe and make use of a 
computationally efficient approach to solving deterministically 
the steady-state 1D pBTE within the relaxation time 
approximation (RTA). This phonon transport solver has been 
self-consistently coupled to an eMC device simulation to study 
the electro-thermal effects in nanoelectronic devices. This 

model provides deep insight into the out-of-equilibrium 
phonon effects in small devices. 

II. THERMAL SIMULATOR 

A. Phonon dispersion 

The phonon dispersion in silicon is composed of six 
phonon modes, i.e. two transverse acoustic (TA), one 
longitudinal acoustic (LA) acoustic, two transverse optical 
(TO) and one longitudinal optical (LO) modes. In this work, 
the TA and TO modes have been considered to be degenerate. 
As suggested in Ref. [5], the dispersion relation for each mode 
s has been assumed to follow an analytic and quadratic 
expression of the form  
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where q is the modulus of the phonon wave vector q


.  

B. Thermal transport equation 

Since the out-of-equilibrium character of phonon transport 
may be significant in nano-devices, the use of the Boltzmann 
transport formalism to study the heat diffusion is particularly 
relevant. The drift term is absent from the Boltzmann transport 
equation for phonons (pBTE), the steady-state form of which 
can be written for each mode s as 
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is the scattering 
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 is the generation term. The equilibrium 

phonon distribution ( , )sN r q


 at a given temperature follows 
the Bose-Einstein statistics. 

C. Heat generation 

The generation term  ,  sG r q
 

 in Eq. 2 derives from either 

an internal source, i.e. from the phonon bath itself, or from an 
external one. The internal source only affects the acoustic 
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modes. Its origin is the anharmonic decay of optical phonons in 
excess into acoustic phonons of lower energy. This 
phenomenon gives rise to a significant energy transfer from 
optical to acoustic modes and has to be taken into account to 
ensure the energy conservation of the system. The external heat 
generation is related to the energy exchange between phonons 
and electrons. A difference between the phonon and electron 
temperatures induces a net increase of emitted (or absorbed) 
phonons. In the self-consistent electro-thermal loop of our 
model, these specific generation terms are extracted from the 
previous solution of electronic transport. More details about 
these generation terms can be found in Ref. [6], in particular 
about the computation of the anharmonic decay. 

D. Scattering term 

The scattering term has been implemented within the 
relaxation time approximation (RTA), i.e. in the form 
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where τs refers to the total relaxation time at the 
temperature TFourier. 

The main issue in such description of the scattering term 
that provides a linear and tractable expression is to determine 
the temperature TFourier to describe locally the temperature-
dependence of the relaxation time. This temperature is 
basically an unknown variable that could be rigorously 
determined via a self-consistent solution. However to simplify 
the iterative process, in our model this temperature is directly 
estimated from a preliminary solution of a simple 1D Fourier 
heat equation. The input parameter TFourier, is inserted in the 
scattering term (Eq. 3) and then Eq. (2) can be solved. 

In this work, the total relaxation time is computed via the 
Mathiessen’s rule and includes the Normal and Umklapp types 
of three-phonon scattering [4], phonon-impurity scattering [7] 
and phonon-boundary scattering [8]. Using adjusted parameters 
of the Holland’s model for phonon scattering, our model 
reproduces the thermal conductivity in silicon in the full 100–
600 K temperature range (not shown here).  

The optical decay into acoustic phonon modes is also 
considered within the approach developed in [9]. 

E. Boundary conditions 

We consider the thermal transport to be 1D. For 2D or 3D 
devices, that means that the spatial phonon distribution is 
assumed to be uniform and the thermal fluxes to be zero along 
the transverse direction(s) perpendicular to the transport. It is 
relevant in the case of quasi-infinite transverse dimensions or 
in the presence of quasi thermal insulator such as SiO2 
surrounding the active region, like in FD-SOI transistors. 
Along the transport direction, the two thermal contacts are 
assumed to be in equilibrium with two ideal reservoirs at 
temperatures T1 and T2, respectively. Thus, the distribution of 
phonons entering the device at a given contact follows the 
corresponding Bose-Einstein distribution. Phonons hitting the 

contact interfaces are free to leave the device and their related 
energy disappear [10]. 

F. Effective temperature 

In the context of non-equilibrium phonon distributions 
which is often encountered at the nanoscale, the concept of 
(standard) temperature is meaningless. An “equivalent 
temperature” field called the effective temperature Teff, defined 
from the total energy of the local phonon bath resulting from 
the actual phonon distribution (which may be out-of-
equilibrium), naturally extends the common temperature 
concept [11, p. 2006]. According to this definition, an effective 
temperature can be evaluated for each mode.  

III. ELECTRO-THERMAL SIMULATOR 

To investigate self-heating effects in electronic devices, the 
thermal solver presented in the previous section has been 
coupled to an electron transport simulator. The resulting 
electro-thermal simulator is described in this section.  

A. Electron Monte Carlo simulation 

To solve the electron transport equation we have used a 
homemade Ensemble Monte Carlo simulation for electrons 
(eMC). In this approach the Boltzmann equation is solved 
using a stochastic calculation of particle trajectories self-
consistently coupled with the Poisson equation. In this version 
of the code the conduction band of electrons in silicon is 
described through an analytical non-parabolic model for the six 
ellipsoidal Δ valleys. All details of the band structure and the 
scattering parameters used for acoustic phonon, inter valley 
phonon, ionized impurity and oxide interface roughness 
scattering mechanisms can be found in Ref. [12]. 

B. Heat generation and phonon dispersion 

The cartography of the phonon temperature is an input to 
the eMC simulation that provides the heat generation term 
needed in Eq. 2 via the local counting of electron-phonon 
scattering events. In contrast to macroscopic approaches 
assuming local equilibrium, this method includes an accurate 
description of the energy transfers between phonons and hot 
electrons and gives access to their exact location [6]. 

As in most common eMC models, the phonon dispersions 
used to conveniently compute the intervalley scattering rates 
are assumed to be wave vector-independent. Fortunately, the 
simulator provides information about the wave vector of the 
phonon selected to be involved in the electron-phonon 
scattering event. Then, the angular frequency of an interacting 
phonon is computed afterward via the quadratic dispersion of 
Eq. 1. (see more details in Ref. [6]).  

C. Self-consistent alogorithm 

The coupled simulation starts with an isothermal (300 K) 
eMC simulation (referred as “open loop” simulation). Then, the 
net phonon generation rates, which are functions of both the 
position and the phonon frequency, are extracted from eMC 
outputs and used as inputs for both the Fourier heat equation 
and the pBTE solver described in Section 2. The resulting local 
effective temperature is then re-injected in the eMC simulator. 

This work was partially supported by the French ANR through project 
NOE (12JS03-006-01). 
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It should be mentioned that only the effective temperature 
fields are exchanged between steps because in standard 
situations the phonon occupations do not significantly differ 
from their equilibrium distribution [6]. Next, all electron 
scattering rates, as electron-phonon and electron-impurity 
scattering rates, are re-calculated in each cell according to the 
position-dependent Teff. Then, the eMC simulation is performed 
again with this new field of temperature. This three-step 
process, that successively includes an electron and a phonon 
transport simulation, is called a loop. The convergence is 
reached when the difference of effective temperature between 
two consecutive loops is smaller than the target value. It should 
be noted that the convergence is commonly reached after only 
three loops.  

IV. SELF-HEATING EFFECTS IN DG-MOS 

The electro-thermal simulator was used to investigate the 
self-heating in a 20 nm long DGMOS transistor. As presented 
later, hot electrons play a significant role in this device; thus 
the optical modes and the related LTO decay have to be 
included in the pBTE solver. 

A 2D cross-section of the studied Si DG-MOSFET is 
schematized in Fig. 1. The device consists of three regions: the 
highly N-doped (51019 cm-3) source and drain regions and the 
20 nm long and non-intentionally doped (1015 cm-3) channel. 
The source length is 50 nm, while the drain length is 150 nm to 
be larger than the relaxation length of hot electrons. The 
thickness of the Si-film is 20 nm. 
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Fig. 1. Schematic cross-section of the simulated device. 

The profile of heat power density resulting from the initial 
isothermal (300 K) eMC simulation (the ‘open loop’) is plotted 
in Fig 1.a. This MC result (solid line) indicates that hot 
electrons heated in the channel, i.e. the high electric field 
region, transfer their energy to the phonon bath mainly in the 
drain region, and for a significant part of them far into the drain 
extension. This result considerably diverges from the 
prediction based on local equilibrium (dashed line) which 
estimates the heat power as the product of the local electric 
field (E) and the local current density (J). This macroscopic 
approach, that neglects the strong out-of-equilibrium effects 
occurring in this DGMOS, predicts that the maximum of 
dissipated heat occurs in the gated part of the channel where 
the field is high.  

In  Fig. 2 the phonon generation rates computed for each 
phonon mode is plotted along the source-drain direction. In the 
source region where electrons remain close to equilibrium (see 
[6]) the emitted phonons belong mainly to the LA and TO 
branches while the other modes have no noticeable effect. In 

the channel, where the transit time of electrons is very short 
compared to the scattering times, the net phonon generation is 
almost zero for all modes. In the drain, where the phonon 
generation rate is clearly the strongest, the main emission 
processes are once again due the LA and TO modes. However 
a significant contribution of TA phonons can be observed near 
the channel, with a shorter decay length. From the channel-
drain junction the decaying of the total phonon generation rate 
is characterized by a decay length of about 28 nm for 
Vds = 1.0 V, which is much shorter than the length of the drain 
extension. Thus, near the drain contact the heat generation rate 
of each mode reaches a local equilibrium state very similar to 
that in the source. This long drain extension of 200 nm is thus 
necessary to make consistent the boundary conditions at 
thermal contact. 

(a)

 

(b)

 

Fig. 2. . At Vgs = 0.5 V and Vds = 1.0 V. (a) Heat power density extracted 
from eMC simulation (green solid line) and from the product   (dashed red 
line). (b) Net phonon generation rate per mode (dashed lines) and total 
generation rate (continous line) due to electron-phonon scattering, from eMC 
simulation. 

A. Self-heating effect 

The heat generation computed from the initial eMC 
simulation presented above has been included in the phonon 
transport equation (p-BTE) to initiate the iterative algorithm of 
an electrothermal simulation. 

We plot in Fig. 3 the profile of the effective temperature Teff 
at Vgs = 0.5 V and Vds = 1.0 V after each loop. It confirms that 
the convergence is obtained after only three loops. The 
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feedback due to the iterative process induces a slight reduction 
of the hotspot temperature from 441 K in the 1st loop to 433 K 
after convergence. Besides, near the two contacts with the 
thermal reservoirs, a temperature drop can be observed. This 
drop is higher near the drain contact because the phonon 
transport is further from equilibrium than in the source side. 

(a)

 
Fig. 1. At Vg = 0.5 V and Vds = 1.0 V. (a) Evolution of the effective 
temperature Teff along the device for several loop numbers.  

V. CONCLUSION 

(a)

 

(b)

 
Fig. 2. (a) Id-Vds at Vg = 0.5 V and (b) Id-Vgs at Vds = 1.0 V. Open loop (blue 
lines with circular symbols) vs. electro-thermal simulations (red lines with 
triangular symbols). Roughness parameter  = 3 nm. 

  

A. I-V characteristics 

The drain current (Id) characteristics as a function of the 
drain voltage (Vds) at a gate voltage Vgs = 0.5 V and the Id-Vgs 
curve at Vds = 1.0 V are shown in Fig. 4.a and b, respectively. 
To highlight the effect of self-heating, the isothermal open loop 
simulations have been compared with electro-thermal 

simulations. As expected, the impact of self-heating manifests 
itself mainly at high drain current, when the enhancement of 
channel temperature is sufficient to induce a significant 
increase of the number of scattering events in the active region. 
It induces a drain current degradation of 6.9% and 20% for 
Vds = 0.5 V and 1.0 V, respectively. Moreover, the maximum 
value of transconductance gm is also degraded.  

In conclusion, we have presented a numerical method to 
solve the stationary Boltzmann transport equation for phonons 
(pBTE) in the relaxation time approximation, considering 
quadratic phonon dispersions. A specificity of our approach is 
to evaluate the equilibrium temperature to be considered in the 
expressions of scattering relaxation times via a preliminary 
solution of the Fourier heat equation This pBTE simulator has 
been coupled with our home-made Ensemble Monte Carlo 
simulation for electrons to study the self-heating effects in a 
20 nm -long DG-MOSFET. The convergence is quickly 
reached, i.e. usually after only three loops. In simulations with 
contacts perfectly thermalized at 300K, the effective 
temperature can exceed 400 K in the hot spot of the transistor 
in open-channel regime. Besides, it has been shown that the 
heat Fourier equation is not able to catch accurately the exact 
location and value of this temperature overshoot. The self-
heating increases the detrimental effects of the access 
resistances and finally, the drain current can be reduced by a 
factor of 20% at high applied voltage.  
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