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Abstract—We describe the transport characteristics of a 
50 nm (gate length) 2D InAs tunnel field-effect n-i-n transistor in 
a double-gate fin-like geometry (fin width 2.3 nm) by means of 
atomic-scale simulations. In particular, we compare results from 
density functional theory (DFT) using the Meta-GGA exchange 
correlation potential with those from a tight-binding 
Hamiltonian. For the first time we show that the two methods 
give comparable results, proving the predictive power of atomic-
scale simulations for this type of devices, and that it is possible to 
accurately study realistic ultrascaled devices with first-principles 
methods. 
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I. INTRODUCTION 
The principle method to achieve higher performance in 

electronic devices has for a very long time been to scale down 
the feature sizes. Although there is a natural atomic limit to this 
pathway, which soon will become a significant issue, each 
node in the development of faster, more energy-efficient and 
tighter packed transistors is still marked by an ever-decreasing 
gate length and pitch size. 

Now, as transistors evolve, so do the tools used to model 
them. In previous work [1] we have shown how an ultrascaled 
FinFET-like InAs double-gate structure could be modeled 
using first-principles methods (DFT). Here we will revisit the 
same structure, more or less, but with several updates: the gate 
length is considerably longer (50 nm vs. 16 nm), the fin is two 
times wider, and we are using a much more robust DFT model 
that gives a correct band gap without resorting to crude 
approximations. In addition, we will consider a more accurate 
way of treating the dangling bonds at the surface, and the 
doping can now be extended farther into the channel (and if 
desired, also under the gate). All these improvements are 
naturally designed to make the simulations correspond closer 
to actual experimental devices, and are enabled by recent 
developments in the latest version of our software package 
Atomistix ToolKit (ATK) [2]. 

After a presentation of the methodology, results for the 
DFT models will be shown, including comparisons with tight-
binding models, with comments on the similarities and 
differences. 

II. METHODOLOGY 

A. Accurate InAs Band Structure from DFT 
For the main part of this study we have chosen to work 

with DFT to describe the electronic structure of the materials. 
While significant progress has been made in simulating 
nanoscale devices using tight-binding (TB) models, these 
methods have clear disadvantages which DFT can improve on. 
Most notably, DFT can quite generally be applied to structures 
containing multiple chemical elements, including explicit 
dopants like boron and phosphorous. TB models also have 
some advantage in calculation speed over DFT, but as we will 
see below, the actual bottleneck lies in the electrostatic model.  

A traditional claim is that DFT cannot accurately describe 
the band gap of semiconductors, but with the introduction of 
modern exchange-correlation functionals this is no longer the 
case. Using hybrid functionals, which often give good band 
gaps, would however increase the computational burden to a 
point where it’s completely impractical for relevant device 
sizes. Instead, we employ a Meta-GGA (MGGA) exchange-
correlation potential TB09 [3], which incurs a minor penalty on 
the simulation time, and yet is able to accurately describe the 
band structures of many semiconductor materials. 

The TB09 potential contains a fitting parameter c, which in 
principle can be self-consistently determined in the calculation, 
via Eq. (3) in Ref. 3. However, that expression diverges if the 
system contains vacuum, where the electron density goes to 
zero. Therefore, we tune c to obtain the correct band gap for 
the bulk crystal (InAs in our case) and then use a fixed value 
for confined structures such as fins and nanowires. 

By this procedure, we can obtain a band structure of bulk 
InAs that exactly matches the “recommended” direct gap 
0.42 eV [4]. Notably, at the same value of c, also the electron 
effective mass at the Г point comes out very close to 0.026me. 
The indirect gaps Г–L and Г–X predicted by our calculation 
are 1.2 and 1.9 eV, respectively. This is in fair agreement with 
Ref. 4, however that doesn’t really mean much; in fact, there 
are no experimental references for these values. A well-cited 
reference (often referred to as “experimental”) is Adachi [5] 
who gives the two gaps as 1.07 and 1.37 eV, but if one traces 
the origin of these numbers back to its source, it turns out they 
are results obtained from a tight-binding simulation performed 
by in 1982 [6]. 
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More interesting is to look at what happens when we 
confine the InAs crystal to effectively 2D (a slab, or a “fin”) 
geometry. In the effective mass model, the confinement effect 
on the effective mass is typically ignored, and the gap is taken 
to scale as 
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where W is the effective width of the slab. However, this 
assumes that the band structure is parabolic, E = 2k2/2m*, 
which is far from the case in InAs, and it also means that the 
effective mass of the slab just attains the bulk value m*. If 
instead we use a non-parabolic dispersion E(1+αE) = 2k2/2m*, 
we arrive at another relation for the band gap of the 2D slab: 
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and correspondingly for the effective mass 
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In these expressions, m* is still the bulk effective mass, and α 
is also fitted using the bulk band structure. However, the 2D 
effective mass now scales parametrically with W. We can 
compare these expressions to the band gap and effective mass 
for explicit atomistic models of confined systems, computed 
with the same DFT model as used for bulk InAs above. The 
results are shown in Fig. 2. 

The surface of an unpassivated nanocrystal consists of 
dangling bonds which will introduce gap states. A common 
trick for eliminating these is to passivate the surface with 
hydrogen. For polar materials like III-V binaries and ternary 
alloys, it is however necessary to use “pseudo-hydrogen” 
atoms with a fractional pseudopotential core charge [7], in 
order to shift the surface states away from the Fermi energy. If 

a surface atom has m valence electrons, this atom will provide 
m/4 electrons to each of its four bonds in a tetrahedral (sp3) 
crystal. To pair these m/4 electrons in each dangling bond, a 
passivating agent should provide (8−m)/4 additional electrons. 
Since As has m=5, it should be passivated with pseudo-
hydrogen containing 0.75 electrons. Likewise, In has m=3 
valence electrons, and should therefore be passivated with 
pseudo-hydrogen with 1.25 electrons. Alternatively, we can 
assign the H atoms binding to In (As) a permanent surplus 
(deficit) of 0.25 electrons in the self-consistent model; this 
approach also works in tight-binding. 

B. InAs FinFET Device Model 
The 2D fin-like model used for the device simulations is 

shown in Fig. 3. The system consists of n-doped electrodes 
with an intrinsic region in between. It has a width of 2.3 nm 
and a total length of 50 nm. In the central part of the system we 
add a 10 nm long top and bottom electrostatic gate. 

The electrodes and electrode extensions are doped with an 
effective density of 5·1019 cm–3. The doping is modeled by 
adding a small positive (compensation) charge of 0.00139e at 
each In and As atom in the doped regions. At the same time, a 
negative charge corresponding to the sum of all atomic 
compensation charges (with the opposite sign) is added to the 

 

 

Fig. 2. The band gap and effective mass of the non-parabolic model from
(1) and (2), compared to a parabolic effective mass model for InAs, using the
values m*=0.023 and 3.13 eV–1. 

 

 
Fig. 1. Band structure of InAs, computed with TB09 MGGA, using c=0.936 
and a lattice constant of 6.0583 Å. The basis set was here
DoubleZetaPolarized, thus a larger set than used for the main calculations in
this work, but by adjusting c at least the direct gap can be adjusted to fit the
experimental value for each basis set and pseudopotential. 
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electron density. This makes it possible to model any doping 
concentration without including explicit dopant atoms (of 
course this means that dopant scattering is not accounted for), 
which would require a very large simulation volume. 

 

Fig. 3.  The InAs device structure used in the simulations. 

There are in total 2,300 atoms in the scattering region 
(compared to just over 800 atoms in Ref. 1), and we use a 
numerical sp3d5 LCAO basis set (Ref. 1 used only sp3). For 
comparison, we will also run the same system using a Slater-
Koster TB sp3d5s* parameter set [8]. All calculations are spin 
unpolarized and spin-orbit coupling is not included. We use 7 
k-points in the transverse direction for the self-consistent 
electron density calculations, and 21 k-points for the 
transmission calculations ion. For all simulations, we use the 
NEGF+DFT (and TB) model as implemented in Atomistix 
ToolKit version 2015 [2]. 

The gate is separated from the InAs by a 1 nm thick 
dielectric region with dielectric constant 3.8ε0. In order to 
obtain a self-consistent solution, the electrostatic problem is set 
up with Neumann boundary conditions (BC) in the direction 
perpendicular to the slab (B axis), periodic BC in-plane (A 
axis), perpendicular to the transport direction, and with 
Dirichlet BC in the transport direction (C axis) at the interface 
between central region and electrodes.  

The Poisson equation is solved with a direct real-space 
solver which is parallel in memory, and as it turns out, this is 
really the bottleneck for the calculations. It would be quite 
possible to go to a larger number of atoms (a wider slab or 
longer gate length), but the memory requirement for the direct 
solver is quite large. For simple tight-binding models this is 
much less of an issue, since the electrostatic grids used there 
are about 10-20 times coarser (in each of the 3 dimensions of 
space) than for DFT, so with the first-principles model we are 
dealing with 1,000–10,000 times more grid points.  

In spite of the hydrogen atoms preventing surface states, as 
described above, we still observe a significant charge transfer 
from the In/As atoms to the surface H atoms (Fig. 4, left). This 
charge transfer leads to the formation of a surface dipole, 
which results in a pronounced potential jump of about 1.3 eV 
at the InAs surface (Fig 4, right). We therefore adjust the gate 
electrode potential such that Vg = –1.3 V corresponds to “zero”. 
This is equivalent to adjusting the metal work function, as is 
done in other simulations. 

III. RESULTS 
We now apply a source-drain bias voltage of Vb = 0.2 V 

and calculate the current I vs. the gate voltage Vg. Fig. 5 shows 
the I–Vg curves obtained with ATK-DFT and ATK-TB, 
together with TB results from OMEN [9]. 

The three calculations give very similar results in the off-
state. The two TB calculations agree on a quantitative level 
across all gate voltages. In particular, they predict almost the 
same subthreshold swing (SS): 98 mV/dec. with ATK and 103 
mV/dec. with OMEN. This agreement might be expected, 
since the InAs TB-parameters are the same [8]. However, the 
electrostatic problem is treated very differently: ATK uses 
charges at the atoms, which are smeared out around each atom, 
while OMEN uses point charges. Another significant differ-
rence is the treatment of the InAs surfaces, where OMEN in-
creases the energy of dangling-bond states, instead of attaching 
hydrogen atoms. Given the good agreement between the two 
results, we may conclude that both passivation schemes work 
equally well. 

Comparing the DFT results with the TB calculations we 
note that the results in the off-state agree rather well, although 
DFT-MGGA predicts a lower SS of 82 mV/dec. In the on-
state, DFT-MGGA gives currents which are essentially the 
same as the TB results. While ATK-TB agrees very well with 
OMEN in the off-state, we note that slightly lower on-state 
currents are obtained with ATK. This might be related to 
differences in the treatment of the electrostatic potential and 
the use of Dirichlet BC in the transport direction. 

The difference between the DFT and TB results is most 
likely primarily rooted in small differences in the electrode 
band structures, as indicated by Fig. 6. It is evident that DFT 
predicts a larger conduction band effective mass (0.107me) than 
the TB model (0.080me) does. This larger DFT effective mass 
results in a smaller tunneling probability through the barrier, 
which is the dominating process in the off-state. We believe the 
DFT result to be more reliable, since the TB model has much 
fewer degrees of freedom to describe the changes to the 
electron structure that take place in a confined structure, 
compared to bulk for which the TB model was fitted. 

Another reason for the difference between DFT and TB–
and indeed between the two TB approaches–might be found in 
the electrostatic difference potentials. Fig. 7 shows the 
potentials in the off-state (left) and on-state (right) as 
calculated with DFT-MGGA (black) and TB (red). In the off-

Fig. 4.  (Left) Charge difference density along the B-axis, averaged over A-
and C- directions. Charge is being transferred from the outermost In/As atoms 
to the hydrogens. (Right) Electrostatic potential at the left electrode edge. Due 
to the surface dipole, a pronounced potential jump is seen at the InAs surface.

 

Fig. 5. Current vs. gate voltage at a source-drain voltage of 0.2 V. The 
subthredshold swing (SS) is shown in the plot for each method. 
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state, both potentials are well converged with respect to the 
electrode length, since the potentials are flat (apart from the 
rapid fluctuations, which are due to the charge transfer taking 
place between In and As atoms). However, the TB potential 
barrier appears to be significantly higher than the DFT 
potential. In the on-state (right panel), the potentials are 
actually not well converged, since there are clear slopes close 
to the electrodes (at C=0 and C=1). This is a consequence of 
the Dirichlet BC condition, discussed above. In this case, 
Neumann BC in the transport direction would be more 
appropriate. We note that the DFT potential has larger slopes 
close to especially the left edge, than what is observed for TB. 
This might be an explanation of the smaller on-current in DFT. 

Both the DFT and TB calculations predict a relatively large 
SS. The reason for this is that the off-state current is dominated 
by tunneling through the potential barrier instead of thermionic 
(“over the barrier”) emission. This is illustrated in Fig. 8 
obtained for TB calculations. The left panel again shows the 
electrostatic potential along the transport direction, while the 
right panel shows the spectral current. The energy scale of the 
spectral current plot has been aligned such that the left Fermi 
level is aligned with the electrostatic potential of the left 
electrode. It is clearly seen that the current is dominated by 
electrons with energies below the barrier top–i.e. by tunneling 
electrons. The large tunneling current is a consequence of the 
small electron mass of InAs. Since the effective mass decreases 
with increasing slab width (due to the non-parabolic bulk InAs 

conduction band), the tunneling current might increase if the 
slab width is increased. On the other hand, an InAs nanowire 
with quantum confinement in two directions would have a 
larger mass, and decreased tunneling can be expected. 

As also discussed above, it it likely that the smaller SS 
obtained with DFT can be explained by the larger effective 
mass, resulting in a lower tunneling current. 

IV. CONCLUSIONS 
We have shown results for InAs device calculations 

performed with DFT-MGGA and with TB. The DFT-MGGA 
is fitted to reproduce the bulk conduction band effective mass. 
The two approaches are generally in very good agree, with 
only quantitative differences in the I–-Vg curves, which are 
most likely due to different effective conduction band masses 
of the confined InAs slabs. In the on-state, the electrostatic 
potential is not properly described with the Dirichlet BCs and 
can be another cause of differences between DFT and TB 
currents. Relatively large subthredshold swing (SS) is found 
with both DFT (SS=82 mV/dec.) and with TB (98 mV/dec.). 
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Fig. 7. Electrostatic (difference) potential in the center of the unit cell along
the transport direction. The left panel show the off-state potential, while the
right panel show the on-state potential. In both panels, the DFT potential is
shown as black, while the TB potential is shown as red. 

Fig 6.  Electrode band structures calculated with DFT-MGGA (black) and
TB (dashed red). The band structures have been shifted such that the
conduction band minimum is at zero energy. 

Fig. 8.  Off-state tunneling. The left panel shows the electrostatic (Hartree) 
potential along the transport direction for a bias voltage of 0.2 V. The right
panel shows the spectral current aligned such that the left Fermi energy
corresponds to electrostatic potential of the left electrode. 
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