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Abstract—A plausible Density Functional Theory (DFT)-
based Oxygen Vacancy (OV) hole trap activation model was 
recently proposed to explain the High Temperature-Gate Bias 
(HTGB) stress-induced additional threshold voltage instability in 
4H-Silicon Carbide (4H-SiC) power MOSFETs. In this model, 
certain originally electrically ‘inactive’ OVs were shown to 
structurally transform over time to form switching oxide hole 
traps during HTGB stressing. Here, we use this model to perform 
transient simulation of the buildup of hole-trapped OVs in 
HTGB-stressed 4H-SiC power MOSFETs. This is shown to 
correlate well with the recently observed excessive worsening of 
threshold voltage instability in HTGB-stressed 4H-SiC power 
MOSFETs. This helps to validate the role of OVs in the 
degradation of high-temperature reliability of these devices. 

Keywords—oxygen vacancy; density functional theory; 
threshold voltage instability; Silicon Carbide; MOSFET reliability  

I. INTRODUCTION 
The state-of-the-art 4H-Silicon Carbide (4H-SiC) power 

MOSFETs, which are promising for electronic applications at 
elevated temperatures and power levels, are plagued by poor 
High Temperature-and-Gate Bias (HTGB) reliability. For 
example, excessive aggravation in threshold voltage (Vth) 
instability has been recently reported in devices operated at 
high temperatures (T>125oC) [1]. Here, Vth instability was seen 
to vary super-linearly with the logarithm of applied stress time. 
This is in clear contrast to the nature of instability observed in 
room temperature measurements, where ΔVth was observed to 
vary linearly with the logarithm of applied stress time [2, 3]. 
The fundamental mechanisms of these differing behaviors are 
not completely understood. 

Near-interfacial Oxygen Vacancies (OV), located in SiO2, 
have been traditionally acknowledged to act as switching oxide 
hole traps, causing room-temperature (RT) Vth instability in 
4H-SiC power MOSFETs (the HDL model) [2-5]. Here, holes 
are considered to be exchanged between the OV hole traps and 
the substrate, through direct tunneling, in response to applied 
bias stresses. Recently, a two-way direct tunneling model was 
developed to explain this phenomenon [6]. Additionally, this 
model explained the experimentally observed linear 
relationship between the measured room-temperature threshold 

voltage instability and the logarithm of applied bias stress 
duration [2]. However, the recently-observed super-linear 
dependence of high-temperature Vth instability on the log of 
applied stress time merits detailed investigation [1]. 

In our previous work [7], we had proposed a DFT-based 
model for plausible OV hole trap activation in 4H-SiC 
MOSFETs stressed under HTGB conditions. According to this 
model, certain originally electrically ‘inactive’ oxygen 
vacancies could be structurally transformed into electrically 
‘active’ switching oxide hole trap configurations during HTGB 
stressing of 4H-SiC power MOSFETs. 

 In this paper, we perform detailed transient modeling of 
the HTGB-induced Vth instability by invoking the oxygen 
vacancy hole trap activation model. We use Density Functional 
Theory (DFT)-based minimum energy pathway calculations to 
calculate the related activation barriers. This model is in 
agreement with the experimentally measured Vth instability 
behavior observed during HTGB stressing of 4H-SiC power 
MOSFETs, and helps to validate the role of OVs in high-
temperature reliability degradation.  

II. AMORPHOUS SILICA MODEL GENERATION 
Our density functional analysis on oxygen vacancies, and 

related calculations (like minimum energy pathways for 
structural transformations) are carried out in 72-atom 
amorphous silica (a-SiO2) models, which are generated using 
two types of methods. The first method involves the traditional 
melt-and-quench quantum molecular dynamics. Here, a 72-
atom α-quartz model [8] is rapidly cooled from its molten state 
at 4000K to 300K through 3000K, 2000K, and 1000K. At each 
temperature, the trajectories of the atoms were determined for a 
period of 1ps (in steps of 2fs) by solving their equations of 
motion based on DFT-calculated forces. The model generated 
using this method does not have ‘bond switches’ with respect 
to α-quartz.  

The second method for amorphous silica generation 
employs a novel approach called the Sequential Back-bond 
Break (SBB) methodology. A detailed description on this 
method is provided in Ref. [7]. Here, we briefly summarize it. 
Firstly, an arbitrarily selected Si-O-Si bridge in α-quartz model 
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Fig. 1. a) An amorphous silica model generated using
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On the other hand, the +1/0 CTL of the 
MD model (Figure 3) occurred at ~ 0.8-1.1eV
SiC Valence Band Edge (VBE). Thus, these O
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TABLE 1: COMPARISON OF PARAMETERS USED IN THE TRANSIENT MODELING 
OF HTGB INSTABILITY WITH THOSE CALCULATED FROM DFT. 

parameter DFT Transient 
simulation 

k12 (s-1) - 2.5 X 1011 
k21 (s-1) - 6 X 1011 
E12 (eV) 0.8-1.1 0.71 
E21 (eV) 0 0 
E23 (eV) 0.5 0.93 
E32 (eV) 0.5 1.63 
E24 (eV) 1.4 1.3 
E42 (eV) 1.0 1.6 
E34 (eV) 1.5 1.5 
E43 (eV) 1.1 1.1 
N (cm-3) - 1019 
v0 (s-1) - 1013 
tox (nm) - 50 
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