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Abstract—With the increased focus on III-V materials as po-
tential candidates for next-generation nanotransistors advanced
bandstructure models going beyond the parabolic band approx-
imation are required to ensure accurate device simulations. For
that purpose we present in this paper a quantum transport
approach that relies on the effective mass approximation ex-
tended with a non-parabolic (NP) correction of the electron
bandstructure. This scheme does not only properly account for
the NP effects present in the thermionic current of transistors,
but also in their source-to-drain tunneling leakage. The NP model
is validated by simulating an In0.53Ga0.47As double-gate ultra-
thin-body transistor with different gate lengths ranging from 15
down to 5 nm. An excellent agreement with full-band results is
demonstrated in all the cases.

I. INTRODUCTION

The downscaling of electronic devices into the sub-10 nm
gate length regime [1] requires simulation tools that correctly
model the underlying physics. Charge transport at these dimen-
sions can no longer be satisfactorily described with classical
concepts: the arising quantum mechanical phenomena must be
properly accounted for [2]. The effective mass approximation
(EMA) represents an accurate, yet computationally efficient,
and flexible framework to deal with quantum transport (QT)
in nano-devices [3]. In effect, geometrical confinement and the
quantization of energy start to play a very important role at
this scale. They cannot be neglected in order to predict the per-
formance of not-yet-fabricated logic components. Especially,
the non-parabolicity of the bandstructure is a critical parameter
since it determines the position of the discrete energy states
inside the transistor channel [4]. It is, however, not captured
by the EMA.

To address this issue the EMA can be extended to include
non-parabolic bandstructure effects in quantum transport cal-
culations. Previous studies showed that this is either difficult
to implement [5] or it necessitates the presence of at least
2 coupled bands [6]. We will show here that NP effects
can be introduced into any QT tool based on the EMA
through rather straightforward modifications of the simulator
code: (i) the energy must be made position-dependent and
(ii) the density-of-states (DOS) must be multiplied by a pre-
factor. The key concepts will be illustrated with the Wave
Function formalism [7], an approach similar to the Quantum

Transmitting Boundary Method (QTBM) [8], but it works as
well in the context of Non-equilibrium Green’s Functions.

The paper is organized as follows: in Section II a formal de-
scription of the effective mass approximation + non-parabolic
effects (EMA+NP) model is presented. The starting point is the
Schrödinger equation and the adjustment of the electron energy
to include non-parabolic dispersion relations. In Section III
we apply the proposed model to a two-dimensional double-
gate (DG) ultra-thin-body field-effect transistor (UTBFET)
consisting of an In0.53Ga0.47As channel. Transport calculations
are performed for devices with varying gate lengths (5-15 nm)
and compared to accurate, but computationally more intensive
full-band results [9]. Finally, Section IV summarizes the paper
and its main contributions.

II. METHOD

The distribution of charge carriers in nanoscale devices can
be calculated from the single-band one-electron Schrödinger
equation:(

− h̄2

2m0
∇ 1

m∗
∇+ Vext(r)

)
︸ ︷︷ ︸

H(r)

Ψ(r, E) = EΨ(r), (1)

where 1/m∗ is the inverse effective mass tensor, Vext(r) the
external potential energy at position r, h̄ Planck’s reduced
constant, Ψ(r, E) the electron wave function, and E the
corresponding energy. To obtain the transport properties of a
given device, Eq. (1) must be discretized on a finite difference
or finite element grid, while open boundary conditions must be
introduced to model the coupling with semi-infinite reservoirs
[7]. As a consequence, Eq. (1) becomes

(E −H(r)− ΣRB(E)) ·Ψ(r, E) = Inj(E), (2)

where H(r) is the EMA-based Hamiltonian of the device,
ΣRB(E) the boundary self-energy, and Inj(E) an injection
vector [7]. In this form Eq. (2) does not include band non-
parabolicity. To enable this feature, the energy E must be
replaced by a position-dependent quantity E′(x) defined as

E′(x) = E + α(E − V (x))2. (3)

The variable V (x) is the average conduction band edge along
the transport direction x and α the non-parabolic factor of
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the simulated material. Solving Eq. (3) for E, the following
well-known relationship can be established

E =
−(1− 2αV ) +

√
(1− 2αV )2 − 4α(αV 2 − E′)

2α
(4)

that contains now non-parabolic effects. The self-energy
ΣRB(E′), the wave function, ψ(r, E′), and the injection vector
Inj(E′) do not depend on E any more (Eq. 2), but on
the altered energy E′ (as shown in Fig. 1). However, the
occupation probability remains constraint to the initial energy
level E. So far, only a minor modification of the quantum
transport code has been required since going from E to
E′(x) only implies an update of the diagonal entries of the
Hamiltonian matrix H(r).

As a result of this process, E′(x)-dependent ψ(r, E′) are
produced, from which the density-of-states DOS(E′) and
transmission probability T (E′) can be derived. The drive
current and electron density are calculated by converting back
T (E′) and DOS(E′) to the original energy E through

DOS(E) = DOS(E′)

∣∣∣∣dE′(x)

dE

∣∣∣∣ (5)

= DOS(E′) (1 + 2α(E − V (x))) , (6)
T (E) = T (E′). (7)

The second code change that is needed to introduce band non-
parabolicity is the multiplication of DOS(E′) by the derivative
of E′ with respect to E. With the ansatz in Eq. (3), the resulting
factor takes a relatively simple form, 1 + 2α(E − V (x)). The
approach is summarized in Fig. 1. Note that any non-parabolic
model can be used, not only the one investigated in this paper,
as long as a function E′(x) = f(E, x) with a well-defined
derivative exists. Hence, more accurate approaches are possible
without additional computational burden.

There is another subtlety that must be carefully paid
attention to in the EMA+NP framework: the choice of the
non-parabolic factor α. As can be seen in Fig. 2 where the
real and imaginary bands of a representative ultra-thin-body
(UTB) structure are presented, the non-parabolic behaviour is
different above and below the conduction band edge. While
non-parabolicity induces a flattening of the real bands, a
compression of the imaginary bands occurs. This phenomenon
can be modeled by using a negative αimag inside the band gap.
In most III-V semiconductors it can be related to the real one
via the following equation

αimag = −αreal. (8)

The imaginary band generated with a negative α agrees very
well with the full-band results and ensures therefore highly
reliable computations of the source-to-drain tunneling leakage
current of nanoscale transistors.

The transformation mentioned above must be applied to all
the energy points that are considered in the device simulation
to calculate the current and carrier density. Once this is done,
the Schrödinger equation is self-consistently coupled to the
Poisson equation, as usually done.

III. RESULTS

The validity of the simulation approach is demonstrated
with a n-type In0.53Ga0.47As DG UTBFET. This structure
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Fig. 1. Average conduction band edge V (x) of a typical UTB transistor. The
Schrödinger equation with open boundary conditions and non-parabolicity,
the energy variable transformation, and the modified expression for the
transmission probability T (E) and density-of-states DOS(E) are reported.
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Fig. 2. Lowest conduction band of a representative UTB bandstructure. A
non-parabolic factor α=1.0 eV−1 is used to fit the full-band results. Inside the
band gap, a negative value α=-1.0 eV−1 is needed to obtain a good agreement
with FB. This is a critical feature of our approach.

exhibits source and drain lengths of Ls=Ld=25 nm and a
gate length Lg varying between 5 and 15 nm, as depicted
in Fig. 3. The source and drain regions have a donor con-
centration ND=5e1019 cm−3. The channel thickness measures
tbody=5 nm. The surrounding high-κ oxide layers consist of
HfO2 and are larger in the source and drain region (tox=6 nm)
than around the gate region (tc=3 nm) to more realistically
represent gate contacts. With tc=3 nm gate leakage currents
are low enough so that they can be safely neglected. Electrons
are injected into the device at the source and drain contacts
only and propagate along the x-axis, which is defined as the
transport direction. In this configuration y is the direction of
confinement and z is open and assumed periodic.

To reduce the computational intensity, a mode-space ap-
proach has been selected to solve the Schrödinger equation
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Fig. 3. Double-gate ultra-thin-body transistor made of an In0.53Ga0.47As
channel with a body thickness tbody=5 nm and a gate length Lg varying be-
tween 5 and 15 nm. The source and drain extensions measure Ls=Ld=25 nm,
they are doped with a donor concentration ND=5e19 cm−3, and they are
surrounded by high-κ HfO2 layers with thickness tox=6 nm. The oxide around
the gate is tc=3 nm.
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Fig. 4. Transfer characteristics Id − Vgs at Vds=0.05V and 0.6V for the
10 nm gate length UTB transistor of Fig. 3. The EMA+NP results agree
well with full-band ones, whereas EMA alone overestimates the current and
underestimates SS.

with EMA+NP. All the required effective masses and non-
parabolicity parameters are directly extracted from full-band
(FB) calculations. Due to the simplicity of the NP model, only
the curvature of the lowest conduction band can be accurately
reproduced, together with its energy separation with the second
sub-band. For the investigated In0.53Ga0.47As with tbody=5
nm, we find m∗x=0.0662 m0, m∗z=m∗x, and α=1.0 eV−1 from
FB. The value of m∗y strongly depends on the inclusion or
not of non-parabolic effects: m∗y,EMA=0.09 m0 without them,
m∗y,EMA+NP =0.0595 m0 with them. It is worthwhile noting
that in the parabolic case, the value of m∗y must be artificially
increased to match the distance between the first and second
conduction sub-bands. This is rather unphysical and should be
avoided whenever possible.

The EMA, EMA+NP, and FB transfer characteristics of
the same DG UTBFET as before are reported in Fig. 4 for
two different Vds. The gate length is set to Lg=10 nm, but a
similar behavior is obtained for all the other gate lengths that
have been considered in this work: the EMA+NP results show
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Fig. 5. Transmission probability and density-of-states in the UTB transistor
of Fig. 3 with a flat potential. Full-band, EMA, and EMA+NP results are
compared to each other. The lowest sub-plot shows the advantage of the
EMA+NP model over EMA only.
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Fig. 6. Subthreshold slope SS and drain-induced barrier lowering (DIBL)
as a function of the gate length Lg for the UTB transistor of Fig. 3. It can
be observed that EMA+NP almost exactly reproduces the full-band results.

an excellent agreement with the FB ones, contrary to EMA that
overestimates the current due to a steeper sub-threshold slope
(SS). This can be understood by going back to the imaginary
dispersion of the In0.53Ga0.47As bandstructure: without non-
parabolicity, the decay constant κ that is responsible for the
wave function attenuation in the band gap, is too large, which
reduces the source-to-drain (S-to-D) tunneling probability. By
introducing a negative α for states situated in the band gap, κ
decreases, S-to-D increases, thus deteriorating SS.

The transmission probability T (E) and density-of-states
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DOS(E) of the In0.53Ga0.47As UTB device are reported in
Fig. 5. A flat potential is assumed to extract these quantities
at Lg=10 nm. Again, the EMA, EMA+NP, and FB results
are compared to each other over a large energy spectrum.
Both EMA and EMA+NP give a transmission function that
resembles the FB one. This is expected since T (E) depends
on the position of the energy sub-bands, which both models
capture. However, EMA+NP is the sole approach that gives a
precise reproduction of the FB DOS(E) features, not only of
the peak locations, but also of the magnitude between the first
and second peak. This is not present in the EMA simulation.

Finally, Fig. 6 shows a gate length scaling study of the
In0.53Ga0.47As DG UTBFET. The drain-induced barrier low-
ering (DIBL) and subthreshold slope (SS) are extracted at
Id=0.1 µA/µm and Vds=0.6 V from transistors whose gate
length ranges from 15 down to 5 nm in steps of 2.5 nm. The
EMA, EMA+NP, and FB models give about the same SS and
DIBL at Lg=15 nm. However, the results start to strongly
diverge as the sub-10 nm gate length regime is reached. The
EMA+NP approach still agrees wells with FB, whereas EMA
underestimates both SS and DIBL values due to the too
low source-to-drain tunneling probability. The latter originates
from the wrong imaginary band dispersion, as already dis-
cussed before. It can be seen that by using the EMA+NP
technique with a positive and negative α, the FB data are
optimally reproduced, at a fraction of the computational costs.

IV. CONCLUSION

In this paper, we have presented a straightforward scheme
to include non-parabolic effects in an EMA-based quantum
transport solver. By introducing a real and imaginary non-
parabolic factor we have shown that both the thermionic and
the tunneling current components of transistors can be cor-
rectly modeled, leading to an excellent agreement with FB re-
sults. This achievement demonstrates that minor modifications
to existing simulation codes can extend their validity down to
the sub-10 nm gate length regime. Due to its computational
efficiency, the EMA+NP approach can be applied to the study
of large-scale III-V FinFETs with a very high precision. More
complex non-parabolic models going beyond Eq. (3) can be
included with little implementation efforts.
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