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Abstract—The contact regions in nanoscaled transistors play
an increasingly important role in the overall performance of
the devices. An electrostatic lens in the source contact region to
focus a beam of electron wave packets into a nanoscaled channel
is investigated here, using a Wigner Ensemble Monte Carlo
simulator. An improvement in the drive-current is achieved by
reducing reflections from the surrounding oxide. The associated
modifications to the momentum distributions are readily shown
by using the phase space description of the Wigner formalism.

I. INTRODUCTION

The dimensions of the channel in modern transistor architec-
tures, like multigate-FETs or UTB-SOI, have progressively
been scaled down to retain adequate electrostatic control of
the channel. The connecting source/drain extensions, however,
remain relatively large and have started to play a significant
role in the overall performance of the device [1]. Therefore,
considerations are made to optimize these regions, e.g. to
reduce the contact and access resistances [2]. We investigate
the use of an electrostatic lens in the source region to increase
the drive-current through the channel by focusing the electrons
into the channel aperture and thereby reducing reflections from
the adjacent oxide.

An electrostatic lens refers to a specially shaped potential
with convex/concave features, similar to optical lenses, used to
steer coherent electrons. The concept was first demonstrated
experimentally in 1990 in [3], [4], in low-temperature, high-
mobility semiconductors, which ensured that the coherent
electrons had a sufficiently long mean free path to conduct
experiments with structures made with the lithographic capa-
bilities at the time. The astounding decrease of the feature
sizes in semiconductor devices, along with novel materials like
graphene, has made (semi-)ballistic electron transport applica-
ble at room temperature [5]. This has sparked new interest in
applying electrostatic lenses in nanoelectronic devices, e.g. [6]
suggests the use of lenses to focus electrons to the center of
nanowires, thereby avoiding rough interfaces and increasing
mobility.

II. ELECTROSTATIC LENSES

Electrostatic lenses use analogous concepts from geomet-
rical optics: Snell’s law describes the refraction of a light
beam traversing an interface between two different media of
propagation, e.g. air and glass. An equivalent law of refraction
can be derived for electrostatic lenses using the principle of
energy conservation: A particle with a wavevector k has a
kinetic energy

Ek =
�2 |k|2

2m∗ , (1)

where � denotes the reduced Planck constant and m∗ the
effective mass. As a particle traverses the interface between
regions at different potentials (illustrated in Fig. 1), its kinetic
and potential energies change. The change in kinetic energy
is attributed only to the change of the component of the wave
vector normal to the interface (red); the component parallel to
the interface (blue) is left unchanged. It follows that

|k1| sin θ1 = |k2| sin θ2, (2)

where θ1 (θ2) is the angle of incidence (refraction) with respect
to the normal of the interface. The magnitude of the wave
vector is proportional to the square root of the kinetic energy:

sin θ2
sin θ1

=
|k1|
|k2|

=

√
Ek1√
Ek2

. (3)

Therefore, the square root of the kinetic energy of a particle
is analogous to the refractive index used in geometrical optics
and this value can be dynamically modified by changing the
value of the potential in the region of the lens. A larger value
of the potential for the lens (relative to its surrounding region)
invokes a stronger refraction (’bending’). However, since the
lens also acts as a potential barrier (assuming a positive value)
the degree of reflection also increases – a trade-off must be
found. If a positive potential step is used for the lens, the
kinetic energy (refractive index) decreases and the electron
is bent away from the normal to the interface. This dictates
that a double-concave shape is needed to form a converging
lens with a positive potential [4]. Fig. 2 shows an example
of a wave packet which is focused when traveling through a
double-concave converging lens.

A further consideration for designing the lens is that the
size of the lens should be larger than the de Broglie wave-
length of the electron (determined by its energy), otherwise an
effective focusing will be distorted by diffraction effects.

III. SIMULATION SETUP

A. Simulator

The Wigner formalism describes quantum physics in the
phase space in terms of functions and variables and is conve-
nient to investigate transient and stationary processes in multi-
dimensional semiconductor structures, ranging from quantum-
coherent to scattering-dominated transport. The simulation re-
sults presented here were obtained using the Wigner Ensemble
Monte Carlo (WEMC) simulator included in ViennaWD [7].
This simulator has been shown to provide highly accurate
results for the coherent evolution of wave packets [8].
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Figure 1: The wave vector of a particle is changed from k1

to k2 as the interface between regions at different potentials
is traversed. The decomposition of each wave vector into its
components normal (blue) and parallel (red) to an interface
is shown. The normal component is modified according to
the potential change, whereas the parallel component remains
unchanged. The illustrated case assumes a positive potential
step, where V2 > V1, such that the particle is refracted away
from the normal to the interface.

The semi-discrete Wigner equation considers a finite co-
herence length (L), which discretizes the k-space with a
resolution of ∆k = π

L , and is given by

∂fw
∂t

+
�q∆k

m∗
∂fw
∂x

=
K∑

q=−K

Vw (x, q − q′, t) fw (x, q′, t), (4)

where q is an index which refers to the quantized momentum,
i.e. p = � (q∆k). The Wigner potential is akin to a Fourier
transform of the potential differences within the coherence
length around a point and is defined as

Vw (x, q) ≡ 1

i�L

ˆ L/2

−L/2

ds e−i2q∆k·sδV (s;x) ; (5)

δV (s;x) ≡ V (x+ s)− V (x− s) .

The WEMC simulator uses the signed-particle method [9]
to solve (4) by generating numerical particles in pairs with
+ and − signs, which capture the quantum information.
The statistics for the particle generation (rate and momentum
offsets) are dictated by the Wigner potential (5). The Wigner
potential encapsulates higher-order derivatives of the potential
and not only its first derivative, i.e. electric field, as in the
classical Boltzmann equation.

B. Geometry

The geometry considered for the simulations is shown
in Fig. 3. This geometry is representative for many current
transistor structures where a narrow channel (< 10 nm) is
surrounded/sandwiched by oxide and is extended to a larger
drain/source contact region; the drain region is not shown. The
oxide is approximated by a 0.4 eV potential barrier, which is
sufficient to constrain the wave packets to the channel and
source regions without inducing excessive particle generation
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Figure 2: The density of a Gaussian wave packet, over a
sequence of time steps, is focused by a converging electro-
static lens with a double-concave shape (as indicated by the
annotation in white). The wave packet has a kinetic energy of
180meV and the lens has a potential of 40meV.

(the generation rate is related to the magnitude of the potential
differences). Wave packets are periodically injected from the
left boundary towards the channel. A converging electrostatic
lens is placed before the aperture of the channel to focus the
wave packets into the channel. The de Broglie wavelength of
the wave packets considered here is in the order of a few
nanometers, which requires the lens to be at least 10 nm wide
to avoid diffraction effects.

C. Steady-state Current

The WEMC simulator is utilized here to calculate the
steady-state current through the channel, by the periodic in-
jection of minimum uncertainty wave packets from the left
contact (boundary) in Fig. 3. Each wave packet represents a
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Figure 3: A 5 nm wide channel sandwiched between two oxide
layers (black) with an adjacent source region with a double-
concave lens (gray), at 40meV, positioned in front of the
aperture to the channel. The left and right boundaries of the
shown domain are considered as contacts (absorbing/emitting
particles), whereas reflecting boundary conditions are imposed
on the top and bottom boundaries. Wave packets are injected
from the left ’contact’ periodically every 10 fs.

Table I: Simulation parameters

σ [nm] Lcoh [nm] ∆k [nm−1] k0 [nm−1] x0 [nm]

3 ÷ 5 30 π/Lcoh (9∆k, 0) (·, 12.5)

single electron and is defined by

fw (x,q) = N e−
(x−x0)2

σ2 e−(q∆k−k0)
2σ2

, (6)

where x0 and k0 are two-dimensional vector quantities rep-
resenting the mean position and the mean wavevector, respec-
tively; σ is the standard spatial deviation and N represents a
normalization constant. The wave packet travels in the two-
dimensional plane towards the right (x-direction). A distri-
bution function, e.g. Maxwell-Boltzmann, can be sampled to
select the energy (wave vector) of each wave packet injected
from the source contact; here, we inject identical wave packets,
with the parameters defined in Table I, which corresponds to
a mean energy of approximately 200meV. The magnitude of
the injected current is set by the value of the period of injection
Tinj , i.e.

I =
q

Tinj
. (7)

The drive-current (through the channel) is calculated by the
Ramo-Shockley theorem [10], adapted to account for the
signed numerical particles used in the WEMC simulator:

I = − 1

Lx

e

Nwp

∑
sivi, (8)

where Lx, Nwp, and e represent the device length in the x-
direction (35 nm), the number of numerical particles represent-
ing one injected wave packet and the unit charge, respectively.
The summation is performed over the entire particle ensemble,
taking the sign (si) and the x-velocity (vi) of each numerical
particle into account. The electric field is assumed to be uni-
form across the channel, directed rightwards, i.e. E = (0, Ex).
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Figure 4: Comparison of the channel currents achieved with
and without the addition of a 40meV electrostatic lens for
wave packets with a spatial standard deviation of 3 nm and
5 nm.

IV. RESULTS

Simulations, using the geometry in Fig. 3, are run with
and without the addition of a converging lens in front of
the aperture to the transistor channel. The steady-state current
is calculated for wave packets with a standard deviation of
3 nm and 5 nm, as shown in Fig. 4. The addition of the lens
consistently increases the drive current; the gains made by
focusing the wave packets into the channel are larger than the
losses from reflections by the lens, which presents a small
potential barrier to the electrons. The lens shows a better
effect, when a (spatially) broader wave packet is focused and
increases the channel current by 15% if σ = 5nm, compared
to an 8% increase if σ = 3nm. Some uncertainty exists
about the true value of the standard deviation for the wave
packet [11]. Moreover, the Gaussian wave packet spreads out
as it propagates. The current gradually rises as the domain is
filled with particles before it converges to a steady-state value
after approximately 140 fs.

Fig. 5 compares the evolution of the probability density
towards a steady state with and without a lens. Due to the
focusing of the wave packets by the lens, the reflections
from the oxide barriers next to the aperture of the channel
are reduced. This observation is supported by the associated
difference of the kx-distributions. Fig. 6 (a) shows the change
in kx-distributions corresponding to Fig. 5 (a); the reduction
in the kinetic energy of the wave packets due to the potential
barrier presented by the lens is clearly shown. However, once
the steady-state is reached (at approximately t = 140 fs; Fig. 6
(b)) a reduction in the probability of left-moving (negative
kx) particles is observed, indicating the lens leads to reduced
reflections overall; the forward-moving particles (around 5∆k)
are enhanced.

V. CONCLUSION

In conclusion, the addition of a converging electrostatic
lens in the source region of a transistor can be used to
effectively focus electron wave packets into a nanoscale chan-
nel by reducing reflections from the oxide surrounding the
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(c) t = 100 fs

Figure 5: Comparison of the evolution of the particle density
for the structure in Fig. 1 without (left) and with (right) a lens.
A wave packet with σ = 5nm is injected every 10 fs. The
density at the sides of the aperture to the channel is reduced
by the addition of the lens.

aperture. Moreover, the results illustrate for the first time
how a steady-state current is obtained with a two-dimensional
WEMC simulator, allowing it to be applied to investigate
practical issues of semiconductor devices.
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