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Abstract—We present fully self-consistent small signal and mi-
croscopic noise simulations of a nanoscale double-gate nMOSFET
by a semi-classical and deterministic approach. We show how
such a system of Poisson, Schrödinger and Boltzmann equations
can be used to self-consistently determine several key quantities
relevant to circuit designers.

I. INTRODUCTION

Semi-classical simulations based on the Poisson equation
(PE), Schrödinger equation (SE) and Boltzmann equation (BE)
are an important tool to understand the intricacies of nanoscale
MOSFETs with feature sizes of just a few nanometers.

A typical scheme to solve these equations for the stationary
case is a Gummel type iteration where all three equations
are solved separately, one after the other, until convergence
is achieved [1]. For RF calculations, this scheme becomes
problematic since the response of the device to a fluctuation
or an exterior perturbation is not solely based on one equation
but on the interplay of all equations that describe the state of
the device. It becomes a necessity to treat the PE, SE and BE
as a fully coupled system of equations that should be solved
self-consistently or else the results might have infeasibly large
errors [2].

Deterministic solvers of the BE based on the expansion of
k-space in spherical harmonics [3] or Fourier harmonics [4] are
well suited to be adapted into such a simultaneous solver. To
this end, much of the work needs to be invested into ensuring
that all physical properties in the continuum are satisfied in the
simulator on a discrete grid. For example, it is by no means
obvious that a property like reciprocity in equilibrium, which
is essentially a symmetry relation between the PE and BE, is
fulfilled on a finite grid.

This work is based on the efforts in Ref. [2] where
the numerical methods have been developed to achieve a
simultaneous solver for the full system of equations of the
PE, SE, and BE that ensures small signal current conservation
as well as reciprocity, passivity, and the Nyquist theorem in
equilibrium. We will show how such a simulator can be used to
compute important small signal and noise quantities for circuit
design for a wide range of bias conditions and frequencies.
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Fig. 1. Double gate nMOSFET with a silicon channel. The shades in the
channel indicate the doping density ND .

II. APPROACH

We consider the two-dimensional device of Fig. 1 which is
treated as translationally invariant in the third dimension. Our
semi-classical approach involves solving the two-dimensional
PE, the BE in transport direction from source to drain with
a parabolic band structure, and the SE in confinement di-
rection (perpendicular to transport). In order to solve the
BE deterministically, we use the Herring-Vogt transforma-
tion [5], the Fourier harmonics expansion [4], and the H-
transformation [3]. Scattering includes the Pauli principle and
comprises elastic acoustic phonon scattering and inter-valley
phonon scattering [6] as well as surface roughness scattering
by a Prange-Nee term [7] in the velocity-randomizing approx-
imation [8].

To obtain stationary solutions, we use the quadratically
converging Newton-Raphson approach to simultaneously solve
the PE, SE, and BE [9].

Small signal quantities can be evaluated self-consistently
by a linearization around the stationary values of the PE, SE,
and BE. However, difficulties arise due to the discretization on
a finite grid. Results from a naive implementation of such a
linearization will not be reciprocal or passive in equilibrium
but careful considerations can be used to restore necessary
symmetries between the BE and PE [2].

Likewise, noise quantities can be described by small fluc-
tuations and hence by a linearization of the PE, SE, and
BE. We use the Langevin-source approach (see e.g. [10]) to
describe fluctuations in terms of Green’s functions and solve
the whole system of equations by the adjoint method [11]
for the Green’s functions of terminal currents. Computation of
the terminal currents requires an adequate formulation of the
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Ramo-Shockley theorem [12]–[14] that is valid for our model,
i.e. two-dimensional PE, SE in confinement direction and BE
in transport direction. This leads to non-trivial difficulties that
need to be addressed in order to obtain a sound definition of
terminal currents as was discussed in great detail in Ref. [2].

The Green’s functions are used to compute the power spec-
tral density (PSD) of the fluctuations of terminal currents [10]
with the noise sources given by generation/recombination rates
at the contacts and scattering. That means, there are no further
degrees of freedom for the full calculation of the noise in a
device.

Small signal related figures of merit include the cut-off
frequency and the maximum oscillation frequency which are
properties of the hybrid parameters and the unilateral gain,
respectively. Both are easily computed if the admittance pa-
rameters are known.

The noise characterization of a MOSFET in common-
source configuration involves a set four figures of merit that
describe the noise of the device for circuit designers [15].
These may be given as the minimum noise figure Fmin, the
noise resistance RN, and real and imaginary parts of the
optimum generator admittance Yopt. However, other represen-
tations are possible which might be better suited to manifest
certain features.

In this work, we will focus on the wide-spread representa-
tion of the noise characteristics in terms of the cross-correlation
and the drain/gate excess noise factors. The cross-correlation
is given by

c =
W12√
W11W22

(1)

and the gate and drain excess noise factors are [16], [17]

β =
5W11gD0

4kBT (ωCGS)2
, γ =

W22

4kBTgD0
, (2)

respectively. Here, Wij is the PSD of terminal currents. The
index ‘1’ corresponds to the gate while ‘2’ corresponds to
the drain of our device in common-source configuration. The
parameter gD0 is given by the drain self-admittance at zero
drain bias and zero frequency and ωCGS was approximated
via

ωCGS ≈ Im(Y11 + Y12),

which is valid for not too high frequencies, i.e. while Y11 and
Y12 are still linear in frequency (cf. Fig. 4).

III. RESULTS

We investigate a two-dimensional double-gate nMOSFET
with a silicon channel in common-source configuration as
shown in Fig. 1. All results in the remainder of this work
refer to the intrinsic device. Parasitics (e.g. gate resistance)
are neglected.

We use a grid point spacing of 0.2nm in confinement
direction and 0.5nm in transport direction while the energy
grid has a spacing of 2.6meV . The number of subbands
was limited to the 10 lowest ones and the Fourier harmonics
expansion was truncated beyond the 7th order. In total we have
anywhere between 1.3 to 1.8 million unknowns, depending
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Fig. 2. Electron density in transport direction (solid lines, left axis) for
VGS = 0.0V , 0.3V , 0.7V at VDS = 0.7V as well as the donor doping
density ND (dashed line, right axis).
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Fig. 3. Stationary drain current IDS vs. drain bias at VGS = 0.5V , 0.6V ,
0.7V .

on the operating point. This necessitates around 250GB of
memory and solving for the stationary solution of a single
operating point takes anywhere between 2h and 10h wall clock
time on a work station with two 8-core Intel Xeon E-2690
processors.

Figure 2 shows the resulting stationary electron density
within the device along the transport direction for various gate
biases and Fig. 3 depicts the current-voltage curves.

Small signal and microscopic noise evaluation can be done
with only one solution step by reusing the Green’s functions
of terminal currents. Thus, at a single operating point and
frequency, both small signal parameters and Green’s functions
of terminal currents can be computed within an hour, while
the evaluation of the PSD takes another 15 minutes.

A. Small Signal Analysis

The small signal analysis yields small signal current con-
serving results and is reciprocal and passive in equilibrium.
Figure 4 shows the admittance parameters versus frequency at
VGS = 0.7V and VDS = 0V , i.e. in equilibrium. For a two-
port in equilibrium Y12 = Y21 must hold for it to be reciprocal
and the figure indicates that this is indeed fulfilled.

The admittances versus the gate bias for VDS = 0.7V
are shown in Fig. 5. With the admittance parameters, we
can compute cut-off frequencies and maximum oscillation
frequencies for various operating points as shown in Fig. 6.
The maximum oscillation frequency is rather high because the
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Fig. 4. Absolute value of admittance parameters |Yij | (as indicated) vs.
frequency at VGS = 0.7V and VDS = 0.0V . Note that |Y12| (red) is equal
to |Y12| (blue) which is to be expected if reciprocity is fulfilled in equilibrium
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Fig. 5. Absolute value of admittance parameters |Yij | (as indicated) vs. gate
bias VGS at VDS = 0.7V and 10GHz.
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Fig. 6. Cut-off frequency fT (blue) and maximum oscillation frequency
fmax (black) vs. gate bias.

device simulation contains neither a gate resistance nor other
parasitics present in real devices.

In both, Fig. 5 and Fig. 6, discontinuities can be seen which
are artifacts of discretization that occur whenever a subband
crosses from one energy box (the intervals of the discretization
scheme) of the discretized energy grid to another box leading
to a discontinuity in the derivatives w.r.t. the potential. Thus,
any plot depicting an observable versus a contact bias – or any
other quantity that influences the potential within the device
– will exhibit these kinds of discontinuities to some degree if
the H-transformation has been used.
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Fig. 7. Gate excess noise factor β (blue) and drain excess noise factor γ
(black) vs. drain bias at VGS = 0.7V in the low frequency limit.
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Fig. 8. Gate excess noise factor β (blue) and drain excess noise factor γ
(black) vs. gate bias at VDS = 0.7V in the low frequency limit.

Although stationary quantities like the density and the
current do in fact show the same behavior, the effect is
so miniscule that it can’t be seen on scales of interest. On
the other hand, small signal parameters (and noise) present
the discontinuities more prominently since their solution is
strongly influenced by the derivatives of the BE w.r.t. the
potential. Due to the origin of the discontinuities as artifacts of
discretization in energy space, we can minimize their impact
by choosing a finer energy grid.

B. Microscopic Noise

From the microscopic noise computation, we obtain PSDs
that have been verified to fulfill the Nyquist theorem in
equilibrium. With the PSDs and the admittance parameters,
we can compute all relevant figures of merit.

In Fig. 7, we show the gate and drain excess noise factors of
Eq. (2) versus the drain bias. Note how the drain excess noise
factor γ immediately increases from its equilibrium value. It
is known that the drain excess noise factor is larger than unity
for small devices [18] compared to long channel devices where
it decreases and approaches a value of 2/3 for high drain
biases [16]. Our simulation yields that the drain excess noise
factor reaches a maximum at VDS = 0.7V of γ ≈ 1.68.

In Fig. 8, the excess noise factors are plotted against
the gate bias for VDS = 0.7V . Here we find that γ is
approximately constant below VGS ≈ 0.2. For higher gate
biases we find qualitatively the same behavior as was found
in Ref. [19] for a 180nm device.

The gate excess noise factor β becomes significantly larger
than the classical long channel estimation of 4/3 in satura-
tion [16]. While the dependence of β on the drain bias is
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Fig. 9. Real (blue) and imaginary part (black) of cross-correlation vs. gate
bias at VDS = 0.7V in the low frequency limit.
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Fig. 10. Minimum noise figure in decibel, NFmin, vs. gate bias at VDS =
0.7V for 1GHz (black) and 10GHz (blue).

small, we can see that it strongly depends on the gate bias in
Fig. 8.

In Fig. 9, we show the real and imaginary parts of the
cross-correlation of Eq. (1) plotted against the gate bias. As
usual for MOSFETs, the real part of the cross-correlation is
negligibly small [20] and hence it is often ignored in the
noise characterization. The imaginary part has a maximum
around VGS ≈ 0.35V of approximately 0.54. This is somewhat
larger than the long-channel value of 0.395 [16]. However, the
imaginary part tapers off for higher gate biases and eventually
approaches zero, i.e. gate and drain current fluctuations become
completely uncorrelated.

The noise figure describes the degradation of the signal-to-
noise-ratio when a signal passes through a two-port. Figure 10
shows the minimum noise figure Fmin. We can clearly see a
local minimum around VGS = 0.4V where the operation of
an amplifier would be optimal w.r.t. noise.

IV. CONCLUSION

We used a semi-classical and deterministic simulator to
compute fully self-consistent small signal and noise quantities
of a nanoscale double-gate nMOSFET. The solver is stable for
a wide range of bias conditions and frequencies and we are
able to extract key quantities for circuit designers.

We discovered discontinuities in the derivatives with re-
spect to the potential that impact the smoothness of our
results. They originate at the discretization of the energy grid
in conjunction with the H-transformation and can thus be
mitigated by a finer energy grid.

Our results clearly demonstrate the capabilities and the
potential for applications of deterministic solvers for small
signal and noise simulations.
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