
SplitSolve: a Fast Solver for Wave Function Based

Quantum Transport Simulations on Accelerators

M. Calderara, S. Brück, and M. Luisier

Integrated Systems Laboratory, ETH Zürich, Switzerland

Abstract—We present SplitSolve, a novel sparse solver dedi-
cated to linear systems in ballistic quantum transport calcula-
tions. The proposed algorithm specifically addresses the need
for higher performance in the innermost loop of the energy
integration in ab-initio simulations on hybrid architectures. The
computation of the open boundary condition is deserialized from
the most time consuming preprocessing step of the linear solver.
The implementation of the algorithm itself is based on algebraic
primitives that perform close to peak performance on current
accelerator platforms. Using SplitSolve it is possible to efficiently
harness the computational performance of these devices for a spe-
cific class of sparse systems. Combined with an efficient eigenvalue
solver for the open boundary conditions, CPUs and accelerators
can be used in parallel, resulting in significant speedups and much
increased resource usage compared to traditional CPU-based
methods. We compare here our implementation of SplitSolve with
MUMPS, a state-of-the-art sparse linear solver for CPUs, and
demonstrate an overall speedup of 7.7x for a nanowire simulation.

I. INTRODUCTION

The general trend to ever smaller and smaller semiconduc-
tor devices has highlighted the shortcoming of classical sim-
ulation methods, which miss important quantum mechanical
effects. Even full-band and atomistic approaches based on
empirical models might not be accurate enough in nanostruc-
tures with large surface-to-volume ratios or in heterostructures.
Ab-initio methods such as those based on density-functional
theory (DFT) are therefore becoming more and more popular
to study transport phenomena at the nanoscale. However,
they suffer from well-known band gap underestimations that
advanced hybrid functionals can partly resolve and they are
computationally much more demanding than their empirical
counterparts.

Meanwhile the quest for higher and higher performance
to be fitted within a restrictive power budget has led to
the emergence of hybrid computing platforms that combine
traditional CPU-based resources with accelerator cards such
as nvidia GPUs or intel MICs. These hybrid computing
systems provide high performance within a comparably small
power envelope, but they also necessitate the adaptation of
established algorithms or their replacement by new ones to
be fully effective. Unlocking the accelerators’ full perfor-
mance potential, particularly for sparse problems, has proven
to be a formidable challenge in both algorithm design and
implementation. The development of novel parallel numerical
methods that can take advantage of all available computational
resources on hybrid platforms is however the key step to
make the computationally intensive ab-initio methods a viable
alternative to empirical quantum transport simulations.

II. METHOD

Quantum transport within the framework of the Quantum
Transmitting Boundary Method [1] or Wave Function formal-
ism [2] gives rise to linear systems of equations Tx = b that
exhibit a specific structure: the T matrix is usually block-
tridiagonal, while the right hand side (RHS) b (injection
vector) has non-zero entries only in the top and bottom block
rows. The atomic structure and the corresponding Hamiltonian
matrix of a Si nanowire are given in Figs. 1 and 2, respectively,
as an example. General-purpose sparse linear solvers cannot
leverage the specific features of the systems they solve. We
have therefor developed SplitSolve, an algorithm that is opti-
mized for the matrices occurring in quantum transport simu-
lations. It clearly outperforms general sparse system packages
at the task of solving the linear systems it was optimized for.
The key properties of SplitSolve are:

1) Efficient preprocessing of the sparse system using
only accelerators such as graphics processing units.

2) Interleaving the preprocessing on the accelerators
with the computationally demanding calculation of
the open boundary conditions on the now idle CPUs.

3) Use of a specific low-rank representation of the
boundary self-energy Σ in combination with the
Sherman-Morrison-Woodbury formula to reconstruct
the full-system wave function.

A. The SplitSolve Algorithm

Given the previously mentioned specific structure of the
right-hand-side b it is straightforward to realize that solving
Tx = b for x is equivalent to computing the first and last block
columns of T−1. The desired solution x can then be obtained
by multiplying these columns with the non-zero entries of b.
As shown in Fig. 3(a) and mentioned above the matrix T =
(E ·S−H−ΣRB) is block tridiagonal. Observe that ΣRB is a
term of lower rank. It can thus be expressed as the non-unique
product of two lower rank matrices so that ΣRB = B · C.
Using the Sherman-Morrison-Woodbury formula

(A+BC)−1 = A−1
−A−1B(1+ CA−1B)−1CA−1

we can reformulate the problem of solving for x as

x = T−1b = (A−BC)−1b
= (A−1 +A−1B(1− CA−1B)−1CA−1)b
= A−1b+A−1B(1− CA−1B)−1CA−1b

Let m be the number of rows in A = E · S − H , n1 the
size of the upper left most diagonal block in A, and nn the

SISPAD 2015, September 9-11, 2015, Washington, DC, USA

SISPAD 2015 - http://www.sispad.org

16978-1-4673-7860-4/15/$31.00 ©2015 IEEE

Fig. 1. Schematic view of the Silicon nanowire used to evaluate the
performance of SplitSolve. At the given length and diameter the structure
consists of 55488 atoms.

Fig. 2. Hamiltonian of the Si nanowire in Fig. 1 in a tight binding model (left)
and in an ab-initio Gaussian orbital basis. In DFT each atom is represented
by 12 orbitals in a 3SP basis set.

size of its lower right most diagonal block. We now choose
a specific representation of ΣRB = B · C: B shall consist
of the first n1 and last nn columns of the unity matrix of
size m while C shall consist of the first n1 and last nn rows
of ΣRB , as illustrated in Fig. 3(a). If Q is the first and last
block columns of A−1, i.e. Q := A−1B and y the solution to
the system without the boundary conditions, y := A−1b, the
previous equations reduce to

x = T−1b
= y +Q(1− CQ)−1Cy
= y +Qz.

(1)

Equation 1 gives rise to the following algorithm to solve the
full system Tx = b:

• Step 1: Solve AQ = B for Q.

• Step 2: Solve Ay = b for y.

• Step 3: Solve Rz = (1− CQ)z = Cy for z.

• Step 4: Compute x = y +Qz

B. Preprocessing Phase

Step 1 of the algorithm is independent of ΣRB and b
and can thus run in prefect parallelism to the solution of the
eigenvalue problem required for the open boundary conditions.
Therefore SplitSolve can be seen as consisting of a preprocess-
ing phase (Step 1) and a postprocessing phase (Steps 2, 3, and
4). In order to efficiently obtain Q Algorithm 1 shown below
can be used. It is a simplified variant of the LU decomposition
for block tridiagonal systems. Let Ai,j denote the ith block row
and jth block column of A and let N be the number of diagonal
blocks in A. Then Algorithm 1 gives Qi,1:n1

= A−1

i,1 , the first

block column of A−1. The last block column of A can be
computed with a similar recursion starting from the upper left
diagonal block and proceeding downwards along the diagonal.
Since they do not share any data dependency, the calculations
of the first and last block columns of Q can be executed
in parallel and make use of two accelerators. To leverage a
higher number of accelerators and reduce the computational
time a modified version of the SPIKE algorithm [3] has been
implemented in SplitSolve. The concept is schematized in
Fig. 4: a 1-D spatial decomposition breaks down the device
under consideration into several partitions. Forming a binary
tree these are subsequently merged together recursively at the

Algorithm 1: Block column inversion

Xn+1 ← 0
Q0 ← −1

i← n
⊲ P1 & P2 in Fig. 4

while i ≥ 1 do
solve (Ai,i −Ai,i+1 ·Xi+1) ·Xi = Ai,i−1 for Xi

i← i− 1
end while

⊲ P3 & P4 in Fig. 4
while i ≤ N do

Qi ← −Xi ·Qi−1

i← i+ 1
end while

parent level when traversing the tree upwards. Each partition
consists of two accelerators computing the first and last block
columns of the inverse of the locally stored diagonal system.
Upon completion siblings in the tree exchange the adjacent
blocks of the inverse to form the inverse on the next upper
level. The merging steps involve solving a linear system whose
size can be reduced to the same order as the exchanged
blocks, making this part computationally very efficient. The
first and last block columns of the inverse of two merged
partitions are obtained by multiplying the previous level’s
block inverse with the solution of the system. This approach
incurs an overhead of one small system to be solved and four
matrices to be multiplied for every merging step. Note that
the number of merging steps logarithmically grows with the
number of partitions: past experiences have shown that the
proposed scheme is mostly practical for parallelization up to 16
accelerators. This is enough energy level parallelism to enable
most realistic QT simulations to be run on the largest available
hybrid super computing systems.

C. Postprocessing Phase

Since y can be computed as y = Q · b, Step 2 is integrated
into Step 4 by evaluating x = Q · (b′+z) where b′ denotes the
nonzero rows of b. In Step 3 C’s sparsity pattern allows R to
be constructed in an efficient way. The final system to solve is
of comparably small size n1+nn due to the choice of C being

17

Fig. 3. (a) Sparsity pattern of the linear system resulting from the Wave Function formalism [2]. The boundary condition self-energy Σ can be represented as
a non-unique product of low-rank matrices. The decomposition used in SplitSolve is shown here. (b) Comparison of runtimes of MUMPS (i.) and SplitSolve
(ii.) (y-axis not to scale). Most of the time of SplitSolve is spent in its preprocessing phase. The speedup over MUMPS is typically 3-10× and 35× for the
preprocessing and postprocessing phase, respectively. For the Si nanowire of Fig. 1 the overall speedup is 7.7×.

a (n1 + nn) ×m matrix. The unknown x vector is obtained
in Step 4 with one multiplication of a tall m × (n1 + nn)
matrix with a thin (n1 + nn) × k one where k denotes the
number of columns in b or the number of states injected into
the simulation domain at the left and right contacts.

D. Numerical Stability

The stability of the block column inversion method in
Algorithm 1 can be demonstrated to be equivalent to that of
the well-known recursive Green’s Function (RGF) technique
[4]. The stability of the postprocessing phase depends on
the stability of the Sherman-Morrison-Woodbury relation and
the specific selection of representation for the update. Given
our choice of B consisting of columns of the unity matrix,
the proposed application of the Sherman-Morrison-Woodbury
formula can be shown to be numerically stable. A detailed
proof can be found in Ref. [5].

E. Roofline Analysis

Current as well as already announced future supercom-
puters featuring accelerators will favor computational power
over execution flow flexibility and memory bandwidth. The
evolution of accelerators seem to follow the same trend as
the one of CPUs. Thus the “memory wall” already observed
in conventional systems will over time deteriorate the per-
formance of algorithms bound by memory bandwidth on
accelerators as well.

SplitSolve involves only algebraic operations on dense
matrices. These operations are well suited to accelerators
given the outlined design compromises and the availability of
highly efficient numerical libraries such as MAGMA, CUBLAS,
or intel MKL. SplitSolve thus manages to employ a large
fraction of the computational power provided by accelerators
and succeeds in outperforming traditional sparse solvers even
though a larger number of algebraic operations are required
for its execution.

It can be shown that SplitSolve has a very high algebraic
intensity (ratio of floating point operations performed to the
number of bytes of operational data) and is therefore bound
by compute power and not memory bandwidth. This is best
illustrated by Fig. 5, where a roofline analysis of the algorithm
is presented [6]. Based on the current position of SplitSolve
in the graph, it can be expected that it will not be limited by

Fig. 5. Schematic presentation of a roofline analysis for SplitSolve. Shaded
areas below the curve mark the domain where performance is limited by
the memory bandwidth, algorithms in white areas are computationally bound.
SplitSolve’s performance and algorithmic intensity is shown for instances of
realistic quantum transport simulations.

memory accesses but computational power for the foreseeable
future. This property makes it a good candidate to benefit from
the more even powerful next generation of accelerators having
a higher ratio of compute power to memory bandwidth.

III. RESULTS

To measure the performance of our implementation of
SplitSolve we have prepared a Si nanowire structure with a
diameter d=3.2 nm and a total length L=104 nm, as shown in
Fig. 1. The structure is composed of 55488 atoms represented
in a localized DFT basis set with 12 contracted Gaussian
orbitals per atom. This results in a system size m=665856.
The required Hamiltonian H and overlap S matrices are
generated with the CP2K package [7]. For our measurements,
SplitSolve has been implemented in OMEN [8], a general-
purpose framework for atomistic quantum transport calcula-
tions. OMEN subsequently loads the Hamiltonian and overlap
matrices from CP2K and performs device simulations based
on them. As a testing platform the Cray-XK7 Titan at Oak
Ridge National Laboratory has been chosen. For the eigenvalue
problem involved in computing the open boundary conditions
(OBCs), the FEAST technique [9] has been applied.
Utilizing 16 hybrid nodes for a single energy point the
Schödinger equation with open boundary conditions is solved

18

Fig. 4. Graphical overview of the SplitSolve algorithm. The system to solve is partitioned into 2n horizontal partitions. Each partition is processed by two

accelerators with perfect parallelism. To obtain Q = [A−1

1
, A−1

n], the partitions are merged recursively. Upon availability of the boundary conditions Σ and
injection vectors b, postprocessing begins. The postprocessing phase mainly consists of solving a small system R and performing a matrix multiplication. It
typically consumes one order of magnitude less time than the preprocessing phase.

in 128 sec with SplitSolve, while 883 sec are necessary with
the MUMPS solver [10] (only CPUs). Hence, the obtained
speed up is equal to 7.7×, as reported in Fig. 3 (b). The
interleaving of the OBC calculation and of the Schrödinger
equation solution as well as the efficiency of the SplitSolve
algorithm both significantly contribute to the drastic reduction
of the simulation time.

IV. CONCLUSION

We have developed an algorithm called SplitSolve target-
ing the linear systems of equations encountered in quantum
transport simulations. By leveraging the special structure of
the involved matrices and optimizing the algorithm to be a
good fit for accelerators a significant speedup over MUMPS,
a state-of-the-art sparse solver, has been achieved. It has been
demonstrated that SplitSolve scales to multiple accelerators,
enabling the investigation of very large device structures and
allowing to make full use of tens of thousands of nodes in
ab-initio quantum transport simulations. With SplitSolve, a
deeper insight into the transport properties of nanostructures is
expected. This holds true not only for the current generation of
supercomputers, but also for the next ones with higher ratios
of computational power to memory bandwidth.

ACKNOWLEDGMENT

This work was supported by SNF Grant No.
PP00P2 133591, by the Hartmann Müller-Fonds on ETH-
Research Grant ETH-34 12-1, by the Platform for Advanced
Scientific Computing in Switzerland (ANSWERS), and by a
grant from the Swiss National Supercomputing Centre under
Project No. s579. This research also used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

REFERENCES

[1] Craig S. Lent and David J. Kirkner, The quantum transmitting boundary
method,” Journal of Applied Physics, vol. 67, no. 10, pp. 6353–6359,
May 1990.

[2] Mathieu Luisier, Andreas Schenk, Wolfgang Fichtner, and Gerhard
Klimeck, Atomistic simulation of nanowires in the sp3d5s∗ tight-
binding formalism: From boundary conditions to strain calculations,”
Phys. Rev. B, vol. 74, pp. 205323, Nov 2006.

[3] Eric Polizzi and Ahmed H. Sameh, A parallel hybrid banded system
solver: the SPIKE algorithm,” Parallel Computing, vol. 32, no. 2,
pp. 177 – 194, 2006, Parallel Matrix Algorithms and Applications
(PMAA04).

[4] A. Svizhenko, A. M. Anantram, Govindan T. R., Biegel B., and
Venugopal R., Two Dimensional Quantum Mechanical Modeling of
Nanotransistors,” J. of Appl. Phys, p. 2343, 2002.

[5] E. L. Yip, A Note on the Stability of Solving a Rank-p Modification of
a Linear System by the Sherman-Morrison-Woodbury Formula,” SIAM

Journal on Scientific and Statistical Computing, vol. 7, no. 2, pp. 507–
513, 1986.

[6] Samuel Williams, Andrew Waterman, and David Patterson, Roofline:
An Insightful Visual Performance Model for Multicore Architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[7] Joost VandeVondele and Juerg Hutter, Gaussian basis sets for accurate
calculations on molecular systems in gas and condensed phases,” The

Journal of Chemical Physics, vol. 127, no. 11, pp. –, 2007.

[8] Mathieu Luisier, Timothy B. Boykin, Gerhard Klimeck, and Wolfgang
Fichtner, Atomistic Nanoelectronic Device Engineering with Sustained
Performances Up to 1.44 PFlop/s,” in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis, New York, NY, USA, 2011, SC ’11, pp. 2:1–2:11, ACM.

[9] Eric Polizzi, Density-matrix-based algorithm for solving eigenvalue
problems,” Phys. Rev. B, vol. 79, pp. 115112, Mar 2009.

[10] P.R. Amestoy, I.S. Duff, and J.-Y. L’Excellent, Multifrontal parallel
distributed symmetric and unsymmetric solvers,” Computer Methods in

Applied Mechanics and Engineering, vol. 184, no. 24, pp. 501 – 520,
2000.

19

