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Abstract—Having access to time-resolved quantum transport
data is beneficial for more accurate calculation of energy/delay
device characteristics during turn on, for studying novel effects
based on the wave function phase manipulation, and as an
alternative research path to simulating dissipation and nonlocal
scattering in real time. We present a time-resolved version of
the quantum transmitting boundary method that relies on the
efficient algorithms developed previously for the steady state
version. Our method in principle can handle arbitrary time-
dependent bias at gate and current-carrying lead terminals, where
leads are limited to rigid spatial potential, and arbitrary atomistic
geometries in the semi-empirical tight-binding basis. Using our
method in the wide-band approximation, therefore relaxing the
numerical complexities of energy scattering, we present the time-
resolved results for important device quantities and discuss the
limitations of the wide band approximation. We also discuss
the potential of this method for parallelization by showing the
computation time versus number of processes scaling results for
multiple levels of parallelization.

I. INTRODUCTION

When predicting the performance of future nanoelectronic
devices, one of the most important parameters is the energy-
delay characteristic [1]. It shows how much energy is necessary
to turn the device on and how long does it take to do it. In the
absence of time-resolved data one has to resort to steady state
IV characteristics and capacitances derived from them in order
to calculate the turn on energy and delay. With our atomistic
time-resolved quantum transport approach we attempt to intro-
duce methodology that will improve the accuracy of energy-
delay predictions by having access to time-resolved current,
density, and other electronic quantities. Some other interesting
application areas for this time-resolved quantum transport
method are studying the effects of the wave function phase ma-
nipulation [2] and exploitation of the spatio-temporal features
of the self-consistent device potential [3]. Furthermore, our
method can be viewed as the first step in creating methods for
simulating device dissipation due to phonon scattering using
real time approach that may favourably compare to traditional
approaches in certain application areas.

There are multiple advantages of the time resolved quantum
transport method presented in this paper. First, as part of
our comprehensive simulation tool [4] it can handle realistic
device geometries and materials in atomistic semi-empirical
tight-binding basis. Another related benefit is the utilization
of the existing code infrastructure for the time-resolved self-
consistent calculations via the nonlinear Poisson equation at
frequencies where the quasi-electrostatic approximation holds.
Furthermore, for not too fast excitations our method directly

relies on the efficient transfer matrix method (TMM) derived
for steady state simulations to calculate the lead modes and
self-energies Σ(E) [5]. Although the TMM comes with a
limitation at the same time, namely the leads must be periodic,
this still enables using our method for the majority of device
applications commonly encountered, except the devices with
disordered leads and driving frequencies in the vicinity of
the plasma frequencies. Specifically, we assume that the leads
have a time-dependent spatially rigid potential, which is a
common approximation in device simulations due to high
plasma frequencies of doped semiconductors (e.g. sec. 13.2
in ref. [6]).

II. METHOD

Our method is based on the mixed energy-time space
approach with the scattering matrix, where the wave function
is partitioned as a sum of injected and scattered terms. The
injection basis consists of single energy Bloch waves, while
the scattered waves in general can contain multiple energies
due to the time-dependent device potential. Being the time-
resolved version of the quantum transmitting boundary method
(QTBM) [7], [8], [5], this method has clear connection to
Greens functions approach [9]. Since it seems that QTBM
may not be a universally accepted term for the kind of method
described in refs. [7], [8], [5] and in this work, we explicitly
define QTBM to be a method that yields a boundary value
problem through explicit incorporation of the open boundary
conditions. This differs from the initial value problem obtained
by using the transfer matrix method, where the solution is
assumed (up to a constant) on one side of the device and then
integrated through to the other side.

We start from the time-dependent Schrödinger equation

i~
∂ψ (t)

∂t
= H (t)ψ (t) , (1)

and the periodic lead assumption, where the lead wave func-
tions are expressed in terms of forward and backward travelling
Bloch waves

Ψ0 (t) = Φ+A (t) + Φ−B (t) ,

Ψ−1 (t) = Φ+A (t)
[
Λ+
]−1

+ Φ−B (t)
[
Λ−]−1

,
(2)

where 0 and −1 denote two adjacent slabs in the lead, Φ± are
the forward and backward propagating lead wave functions in
slab 0, and Λ± are the phase factors between the two slabs.
Slab is a region in the lead with a single unit cell thickness in
the transport direction, with the other two dimensions being
determined by the device transversal boundary conditions. B is
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the scattering coefficient to be calculated, and A is the injection
condition. The injection condition for the time-dependent rigid
lead is given by:

A (t) = exp

[
− i

~

∫ t

t0

(E + V (t)) dt

]
1 , (3)

where E is the total energy of the injected lead state and V(t)
is the change in the lead potential energy due to external time-
dependent bias. After some algebra, the main equation for the
time-resolved wave function with open boundaries is:

i~∂ΨE∂t = [HE(t) − E(t)]ΨE(t) + IE(t) , (4)

where ΨE, hE , and IE are the wave function, Hamiltonian, and
lead injection terms in the mixed scattered mode/orbital space.
An equivalent equation in just orbital space can be obtained
by explicitly calculating Σ(E) and summing it with the orbital
Hamiltonian.

When the above equation is used directly with the lead
TMM, the phase coherence between the device and leads may
be lost due to the arbitrary phase of the TMM eigensolver
solution. This can be resolved by consistent phase normaliza-
tion in the leads. Another important computational aspect is
related to the scattered-mode degrees of freedom in hE that
belong to multiple closely spaced energies due to the time-
dependent nature of the excitation. Naive approach may lead
to a large matrix condition number and numerical instabilities
when extracting scattering probabilities to different energies.
However, for slow enough excitations one can use the wide-
band approximation (WBA), which amounts to keeping only
the injected energy in the scattered-mode space, or equivalently
replacing the convolution

∫
duΣ(t − u)ΨE(u) with Σ(E)ΨE,

which significantly reduces the computational burden.

III. RESULTS

Here, we show the time-resolved data using the WBA, as
well as the domain of validity of the WBA in terms of the
rate of excitation. The simulated nanostructure is a 3x3 unit
cell Si nanowire 20nm long in sp3d5s∗ atomistic tight binding
basis, Fig. 1. The time dependent potential in the middle of the
nanowire is a 4nm wide potential barrier with 10mV amplitude
and variable rise times. Figs. 2 and 3 show the time-resolved
wave function magnitude, transmission T, and reflection R
probabilities for energy with one propagating mode. The wave
function magnitude is plotted along a chain of atoms with
cross-sectional coordinates 1.4x0.3nm and shows artifact free
lead/device interface, i.e. without reflections usually associated
to non-ideal open boundary conditions. Fig. 4 shows the
domain of validity of the WBA based on the probability current
conservation. For all three excitations rates the final potential
barrier amplitude is 10mV. The faster the excitation the less
conserved the probability current is in the WBA due to the fact
that faster excitations correspond to larger energy changes of
the initial injected state. The final wave function magnitudes
match quite well for the three excitation rates. However, from
the probability conservation we conclude that the WBA is valid
up to around 1mV/ps, which corresponds to roughly a few
GHz in realistic devices.

Nanowire calculations mentioned in the previos parahraph
have the potential to be parallelized in order to be able to speed

Fig. 1. Simulation structure. Bottom: Si nanowire 3x3 unit cells cross
section, 20nm length. Top: sp3d5s∗ band diagram where horizontal axis is
the longitudinal wave vector in terms of its distance from the far left hand
side of the Brillouin zone.

up realistic device calculations with large number of relevant
energies and bigger nanowire cross sections. We employ two
levels of parallelization: the first level is the parallelization of
the energy space and the second level is the parallelization of
the linear system itself (eq. 4) at each energy. Fig. 5 shows
the surface plot of transmission as a function of time and
energy with 64 total energies and 20000 time steps, where
the energies are parallelized across 64 processes and the linear
system across 4 processes, utilizing in total 256 computing
cores. Fig. 5 uses the same device and parameters as fig. 3. It
shows abrupt transmission changes along the vertical axis at
t = 0ps, corresponding to the onset of different bands in the
lead, and then gradual decrease of transmission up to around
t = 10ps corresponding to the increase in the tunneling barrier
amplitude. The energy windows where the transmission drops
roughly correspond to the steady barrier amplitude.

Finally, figs. 6 and 7 show the scaling performance for
both levels of parallelization for a Si nanowire with 4x4 unit
cells (2.15x2.15nm) and 10 time steps. In fig. 6 there are 64
energy levels. The linear system (time stepper) parallelization
is fixed to 4 ranks, and the total number of ranks is varied,
thus showing the effect of energy parallelization. The scaling is
almost ideal, which is not surprising for an optimized code due
to different energies being independent. In fig. 7 there is only
one energy, while the time stepper parallelization is varied,
thus showing the performance of the linear system solution in
parallel. The linear system solver is direct, based on the LU
decomposition (MUMPS LU). The scaling is good, albeit not
ideal. The improvements may be possible by further optimizing
the direct solver and also by investigating the possibility of
using iterative linear solvers.

IV. SUMMARY AND CONCLUSION

We present a time-resolved quantum transmitting bound-
ary method suitable for atomistic device simulations in the
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Fig. 2. Wave function magnitude along a chain of atoms at 1.4x0.3nm for
left injection at energy 1.755eV with one propagating mode. The rising edge
of the potential barrier in the middle is 1mV/ps and the total rise time is 10ps.
The time step is 1fs. There are no visible artificial reflections at device/lead
interfaces.

Fig. 3. T and R corresponding to data in Fig. 2.

quantum transport framework and semi-empirical tight-binding
basis. We show some basic time-resolved device quantities that
can be obtained with this method and from which observable
quantities, like density and current, can be straightforwardly
calculated. We employ the wide band approximation and dis-
cuss its physical limitations using a Si nanowire model device.
Finally, we present the parallelization performance of the
algorithm and its implementation in terms of the computational
time scaling with the number of computational cores. Over-
all, our method shows a good potential to simulate realistic
devices in the quantum transport regime and to successfully
expand the current steady state quantum transport simulation
methodologies to time-resolved domain.
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Fig. 4. Long time wave function magnitude and probability current con-
servation (T+R) for 1, 2, and 10mV/ps rising edges. Due to non-ideal
probability current conservation the wide-band approximation is valid up to
around 1mV/ps, corresponding to a few GHz in realistic transistors.

Fig. 5. Transmission as a function of time and energy with 64 total energies
and 20000 time steps. Same parameters as in fig. 3. Abrupt transmission
changes along the vertical axis at t = 0ps correspond to the onsets of different
bands in the lead, while the gradual decrease of transmission up to around
t = 10ps corresponds to the increase in the tunneling barrier amplitude. The
energy windows where the transmission drops roughly correspond to the
steady state barrier amplitude.
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Fig. 6. Strong scaling study for a Si nanowire with 4x4 unit cell cross
section and 10 time steps. The time stepper (linear system) parallelization is
fixed to 4 ranks. The total number of ranks is varied, thus varying the energy
parallelization. The scaling is almost ideal, which is expected for an optimized
code due to different energies being independent.

Fig. 7. Same as fig. 6, except that there is only 1 energy, while the time
stepper (linear system) parallelization is varied. The linear solver is MUMPS
direct solver based on the LU decomposition. The scaling is good, even if not
ideal. Further improvements may be possible by optimizing the direct linear
solver and by investigating the possibility of using iterative linear solvers.
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