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Abstract—The field of computational electronics began in a 
serious way when the so-called semiconductor equations were 
numerically solved in one, two, and three dimensions. The result 
was a new tool in the device engineer’s toolkit, and the impact was 
profound.  Much of the subsequent history of the field has 
consisted of working to improve the description of carrier 
transport as provided by the drift-diffusion equation.  Much has 
been accomplished, but drift-diffusion based simulations continue 
to be the mainstay. One reason has to do with the computational 
burden of more advanced techniques, but another is that drift-
diffusion equations have proven to be surprisingly effective even 
in situations where there were expected to fail.  This talk is a brief 
history of computational electronics with an emphasis on the 
unreasonable effectiveness of drift-diffusion equations.  The talk 
concludes with thoughts on where things stand and on how 
computational electronics can best position itself to contribute to 
a new era of electronics. 
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I. INTRODUCTION 
Advances in semiconductor technology over the past 50 

years have shaped the modern world, and numerical simulation 
of semiconductor devices and processes have played a critical 
role in these advances. The full, numerical solution of the van 
Rooesbroeck “semiconductor equations” was a major advance, 
and numerical solutions to these equations still dominate 
(although only a few specialists remember how to solve them!). 
Much of history of computational electronics is a story of trying 
to do better than drift-diffusion. Using this as a theme, I’ll trace 
the history of our field from the simple drift-diffusion equation 
to full, numerical simulations of dissipative quantum transport, 
which is now the cutting edge of device simulation. Along the 
way, I’ll illustrate some unexpected examples of where drift-
diffusion works surprisingly well and try to explain why. I’ll 
conclude with some thoughts on where our field is heading as 
we enter a new era of electronics and on the role computational 
electronics can play in this exciting future. 

II. A BRIEF HISTORY 
The device that dominates modern electronics is the transistor, 
and understanding electron transport in transistors has driven 
much of the work in computational electronics. The three, 

coupled equations that describe semiconductor devices are the 
continuity equations for electrons and holes and the Poisson 
equation. When augmented by constitutive relations for the 
electron and hole currents, recombination and generation rates, 
etc. a system of three, coupled non-linear partial differential 
equations in three unknowns, the electron and hole densities 
and the electrostatic potential, results. By 1950, the equations 
had been clearly formulated with the currents described by 
drift-diffusion equations [1]. 

Before there were drift-diffusion simulations, device 
researchers developed analytical, compact models for 
transistors. Semiconductor device modeling consisted of 
appropriately simplifying the semiconductor equations and 
solving them analytically for specific devices (see [2, 3] for 
two early examples). This was all done without the aid of 
computer simulations. Looking back, it is remarkable how 
good the pioneers of our field were at understanding the 
essential physics and distilling it into models that engineers 
could use. One must admire their insights and intuition. Many 
of the models they formulated still form our conceptual picture 
of semiconductor devices. 

By the 1960’s, computers had advanced to the point where 
the full set of coupled, nonlinear equations could be solved 
numerically. Beginning with the “Gummel method” [4] and 
the “Scharfetter-Gummel technique” [5], the solution of these 
equations became practical. Others followed by extending the 
solutions to 2D [e.g. 6,7].  A major step was the public release 
of codes designed to be used by device engineers rather than 
by experts in numerical simulation [8, 9]. Applied 
mathematicians became involved, and the codes became faster 
and more robust [10]. By the 1990’s, numerical device 
simulation had become a practical, everyday tool for device 
engineers and scientists (e.g.  [11]). 

Electronic devices continued to shrink in size as 
computational electronics entered the mainstream.  Concerns 
were raised about the validity of drift-diffusion equations in 
the presence of high electric fields that varied rapidly in space 
and time.  The obvious choice was to add higher moments of 
the Boltzmann Transport Equation using so-called energy 
transport and hydrodynamic approaches.  Formulating these 
equations always involved, however, numerous simplifying 
assumptions that were difficult to justify in general [12].  In the 
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search for more accurate solutions to the BTE, Monte Carlo 
techniques were developed – first for high-field transport in the 
bulk or large devices [13, 14], and then in devices [15].  
Sophisticated Monte Caro simulations that could accurately 
treat so-called off-equilibrium transport and breakdown were 
developed and became widely used for scientific studies. 
Device engineers continued, however, to rely on drift-diffusion 
based PDE approaches informed by the more rigorous but 
more computationally demanding Monte Carlo simulations. 

As the 20th Century ended and the 21st Century began, the 
continued downscaling of device dimensions led to concerns 
about the validity of semi-classical descriptions of carrier 
transport.  A need for simulations that captured quantum 
transport arose, and many techniques were explored.  Today, 
the mainstay of quantum transport is the Non-Equilibrium 
Green’s Function (NEGF) approach [16, 17], and 
sophisticated, industrial strength codes are available [18].  This 
approach not only describes nanoscale transistors [19], but also 
much smaller molecular device [20, 21]. 

Looking back over the past 50 years of computational 
electronics, it is amazing how far we have come. Our goal was 
general purpose, “predictive” simulations. This goal proved to 
be elusive and today, technology developers continue to rely 
heavily on drift-diffusion models complimented with more 
sophisticated simulations. Surprisingly, drift-diffusion models 
often work remarkably well. There seems to be an 
unreasonable effectiveness of diffusion equations at the 
nanoscale and this unexpected effectiveness can be explained. 

 

III. THREE SIMPLE EQUATIONS 
The celebrated drift-diffusion equation 

  
Jn = nqμnE + qDn

dn
dx

           (1) 

continues to be widely-used in solid-state electronics. We 
understand, however, that the drift-diffusion equation can fail –  
especially in small devices. Even for near-equilibrium transport, 
it is widely felt that the drift-diffusion equation begins to break 
down in the quas-ballistic regime. This, it turns out, is not 
necessarily true. 

The Shockley-McKelvey equations [22, 23] 
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       (2) 

are a simple form of the Boltzmann Transport Equation. They 
describe the transport of a forward-directed flux of electrons, 
F + x( ) , and a reverse flux, F − x( ) . The two fluxes are coupled 

by backscattering. The probability per unit length of 
backscattering is 1 λ , where λ  is the mean-free-path for 
backscattering.  Equations (2) describe transport from the 
ballistic to diffusive limits. For a very small mean-free-path, the 
forward and reverse fluxes are strongly mixed, and diffusive 

transport results. For a very large mean-free-paths, the forward 
and reverse fluxes do not change – they are simply equal to the 
values that were injected from the two contacts. Surprisingly, 
eqns. (2) can be mathematically rewritten as eqn. (1) [23], 
which shows that at least under the right conditions, the drift-
diffusion equation can describe ballistic transport. 

The Landauer Approach [24, 25], 

I = 2q
h

T E( )∫ M E( ) f1 − f2( )dE        (3) 

describes transport in terms of the quantum of conductance, 
2q h , the transmission, T E( ) , the distribution of modes (or 

channels), M E( ) , and the difference in Fermi functions of the 

two contacts, f1 − f2( ) . Equation (3) is widely used to describe 
transport in nanostructures, but it can be derived from eqn. (2), 
which is not restricted to nanostructures.  Equation (1) can alse 
be derived from (3). We conclude that eqns (1) – (3) are, in 
some sense, equivalent and that they apply broadly to devices 
that operate from the ballistic to diffusive limits. 

This talk will discuss several examples where “common 
sense” suggests that diffusion equations should fail, but where 
they turn out to work remarkably well for reasons that can be 
simply understood.  Diffusion across the thin base of a bipolar 
transistor shows that Fick’s Law can work all the way to the 
ballistic limit. Heterojunction bipolar transistors with ballistic 
launching ramps show that far from equilibrium, near ballistic 
transport can appear diffusive. An emission-diffusion theory 
from the 1960’s reproduces the Landauer theory of the ballistic 
MOSFET. Turning to phonons, we find that steady-state heat 
transport at the nanoscale can be described by Fourier’s Law 
and that quasi-ballistic transient heat transport can be described 
by a diffusion equation. What is surprising is not that we can 
find conditions where drift-diffusion equations fail, but rather, 
how often they work. This talk will show that there are very 
good reasons for the broad applicability of drift and diffusion 
equations. 

IV. DISCUSSION 
Our field has witnessed remarkable advances over the past 

40 years. We now have available a variety of tools to design 
and explore devices, but we still don’t have the single, broadly 
applicable solution that treats the wide variety of problems 
device researchers encounter. Today, we can see the end of 
Moore’s Law looming – at least in terms of device 
downscaling. Moore’s Law has driven much of the research in 
computational electronics.  The future looks to be more diverse 
in terms of technologies, less predictable and “roadmapable”, 
and more driven by applications.  What should we in 
computational electronics be doing to support the success of 
this new era in electronics?  I argue that our focus at this time 
should not be on developing new simulation tools – rather, we 
should return to our problem-solving roots. 

The great device physicists of the 1950’s, 60’s, and 70’s 
were remarkable people.  Without numerical simulations to 
support them, they developed a deep understanding of the 
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essential physics of devices and translated that into models that 
had great impact.  When simulations became available, we 
found that they got almost everything right.  Today, we have a 
powerful set of computational tools and a new set of problem to 
address. Every tool has its limitations.  The art and practice of 
modeling and simulation consists of understanding the science 
deeply, so that results from different simulations 
(complemented with carefully designed experiments) can be put 
together to solve problems. The challenge now is to use the 
excellent simulation tools that are available to do “excellent 
computer simulations” that address important problems [26, 
27].  Analytically compact models, like the first generation 
device models, play an important role. They provide a concise 
description of the essential physics in a way that can be 
communicated to the broader device community.  They help us 
interpret what we see in physically detailed simulations and 
experiments. The iterative back and forth between experiments 
and numerical simulations and simple, essentials-only models 
advances device science. Indeed, there appears to be a principle 
in science that things that look complex at the miscroscale can 
be simply described with only a few parameters at the 
macroscale [28].  Some examples of this style of computational 
electronics from the NanoEngineered Electronic Device 
Simulation (NEEDS – needs.nanoHUB.org) initiative will be 
presented. 

V. SUMMARY 
The first generation of computational electronics specialists 
was device scientists and engineers with problems to solve. 
They got the field started. Later on, when experts in theory, 
mathematics and computing joined the effort, the tools became 
much more powerful. There are some obvious ways that our 
current tools need to improve, and this important work should 
continue. It is not at all obvious, however, what new 
capabilities are needed to address the new problems of 21st 
Century Electronics. A problem-solving stage that largely 
makes use of the tools we have can set the stage for an exciting 
second act for computational electronics. 
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